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Experiment: 1

Discrete-time signals

Scilab code Solution 1.1 Representation of discrete time signals
//scilab 5.5.2 [0S: Ubuntu 14.04
//Generation of signals

//Unit Sample Sequence
clear ;clc ;close ;

L = 4; //length= 2xL+1

n = -L:L; // Time index
vector

x = [zeros(1,L),1,zeros(1,L) 1;

figure (1);

subplot (421) ,plot2d3(n,x),xtitle (’Unit Sample
sequence’,’'n’,’x_1[n] ") ;

//Unit step function

//clear ;clc ;close ;

n1=0:5

x1=[ones (1,6)];

subplot (422) ,plot2d3(nl,x1),xtitle(’Unit Step
sequence ’, 'n’,’x_2[n] ")

//figure (1); plot2d3(n,x);
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//xtitle (’Discrete Unit Step Sequence’,’n’,’x[n]’) ;

//Unit ramp function

//clear ;clec ;close ;

L = 4; // Length of the
sequence

n2= -L : L;

x2= [zeros(1,L ),0:L ];

,subplot (423) ,plot2d3(n2,x2),xtitle (’Unit Ramp
sequence’,’'n’,’x_2[n] ")

//plot2d3 (n,x);

//xtitle (’ Discrete Unit Ramp Sequence’,’'n’,’x[n]”)

I

//Discrete time Exponential signal
//clear ;clc ;close ;

a =0.5; //For decreasing a<l and For increasing
exponential a>1
n3 = 0:10;

x3 = (a)."n3 ;

subplot (424) ,plot2d3(n3,x3) ,xtitle(’ Exponential
Sequence’, 'n’, ’'x_3[n] ")

//plot2d3 (n,x); xtitle (" Exponentially Decreasing

) J

Signal ’,’'n’,’x[n]’);

//Sinusoidal signal

//clc;clear;

fm=100; // Frequency 100 Hz or input(’Enter the input
signal frequency:’); //100

k=3; // Number of cycles:3 or input(’Enter the number
of Cycles of input signal:’); //3

A=1; // Unit amplitude or input(’Enter the amplitude
of input signal:’); //5

tm=0:1/(fm*fm) :k/fm;

x4d=A*xcos (2*%pi*fm*tm) ;

subplot (425) ,plot2d3(tm,x4) ,xtitle(’Sinusoidal
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Signal’,’'n’, 'x_4[n] ")

//figure (1);plot2d3 (tm,x);

//title (" Graphical Representation of Sinusoidal
Signal 7) ;

//xlabel (’Time’) ; ylabel (" Amplitude ’) ;

/) xgrid (1)

//Square wave

//clc;clear;

t=(0:0.1:4%%pi) ’;

x6=4x*Ypi*xsquarewave (t);

subplot (426) ,plot2d3(t,x5) ,xtitle(’Square wave’, 'n’,
"x_5[n] ")

// Triangular wave
//clear;clc;

A=5// input(’enter the amplitude:’); //5
K= 2// input(’enter number of cycles:’); //2
x6 = [0:A A-1:-1:17;

x7=%x6;

for i=1:K-1

x7=[x7 x6];

end

n7=0:1length(x7)-1; // Index of the sequence

subplot (427) ,plot2d3(n7,x7);xtitle(’ Triangular wave’
, ‘time’, "amplitude ") ;

//Sawtooth wave
//cle;clear;

A=5//input (’enter the amplitude:’); //5
K=2; //input (’enter number of cycles:’); //2
x8 = [0:A];
x9=x8;
for i=1:K-1

x9=[x9 x8];
end

n9=0:1length(x9)-1;
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Figure 1.1: Representation of discrete time signals

subplot (428) ,plot2d3(n9,x9);xtitle(’Sawtooth wave’
time’, "amplitude ’) ;

// Complex valued signals

clc;clear;

n= [-10:1:10];

a=-0.1+0.3%%i;

x=exp (a*n) ;

figure (2);

subplot (221), plot2d3(n,real(x));xtitle (’Complex
valued signal’,’n’, Real part’);

subplot (223), plot2d3(n,imag(x));xtitle(’'Imaginary’

7n7);
subplot (222), plot2d3(n,abs(x));xtitle(’Magnitude
part’,’'n’);
theta=(180/%pi)*atan(imag(x) ,real(x));

subplot (224), plot2d3(n,theta);xtitle(’Phase part’,

n’);

Y




Figure 1.2: Representation of discrete time signals
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Experiment: 2

Verification of Sampling
Theorem

Scilab code Solution 2.1 To verify Sampling theorem in Time domain

//scilab 5.5.2 ., OS: Ubuntu 14.04

//Sampling

clc;clear;

fm=100; //=input (’Enter the input signal frequency:’)
: //100

k=4; //input (’Enter the number of Cycles of input
signal:7); //2

A=1;//input ('Enter the amplitude of input signal:’);

//3

tm=0:1/(fm*fm) :k/fm;

x=A*xcos (2*%pi*xfm*tm) ;

figure (1) ;

subplot (411) ,plot(tm,x);

title ("ORIGINAL SIGNAL’) ;xlabel ('Time’);ylabel (’
Amplitude ’) ;

xgrid (1)

//Sampling Rate(Nyquist Rate)=2xfm
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fnyq=2*fm;

// UNDER SAMPLING

fs=(3/4) *xfnyq;
n=0:1/fs:k/fm;

xn=A*xcos (2x)pixfm*n) ;
//figure (2) ;

subplot (412) ,plot2d3(’gnn’,n,xn);
plot(n,xn, 'vr7);
title(’Under Sampling’);
xlabel ("Time’) ;
ylabel (" Amplitude ') ;
legend (’Sampled Signal’, ’Reconstructed Signal’);
xgrid (1)

//NYQUIST SAMPLING
fs=fnyq;

n=0:1/fs:k/fm;

xn=Axcos (2*%pi*xfm*n) ;

// figure (3) ;

subplot (413),
plot2d3(’gnn’,n,xn);
plot(n,xn, 'r7);
title(’Nyquist Sampling ') ;
xlabel ('Time’) ;
ylabel (" Amplitude ) ;
legend ("Sampled Signal’, “Reconstructed Signal’);
xgrid (1)

//OVER SAMPLING
fs=fnyq*10;

n=0:1/fs:k/fm;

xn=Axcos (2xpixfm*n) ;
//figure (4)

subplot (414)
plot2d3(’gnn’,n,xn);
plot(n,xn, 'vr7);
title(’Over Sampling’);
xlabel ('Time’) ;
ylabel (" Amplitude ') ;
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Figure 2.1: To verify Sampling theorem in Time domain

legend ("Sampled Signal’,
xgrid (1)

// Result

// Observing plots

"Reconstructed Signal’);

13



© 00

10

11

Experiment: 3

Impulse response of the LTI
system

Scilab code Solution 3.1 To determine the impulse response of a system
given a difference equation

//scilab 5.5.2 ., OS: Ubuntu 14.04

//To determine the impulse response of a LTI system,
given the difference equation y[n|]=b2 x(n—2)+bl
x(n—1)+ bOx(n) +a(l)y(n—1)

clear all;clc;close;

b=input (’Enter the coefficients of input x[n]= ");//
1)

a=input ('Enter the coefficients of output y[n]= 7);
//[1 —1 0.9]

x=[1 zeros(1,9)];//generate impulse sequence of
length 10

n=0:9;

h=filter(b,a,x);

figure; plot2d3(mn,h),

xtitle (’Impulse response h[n]’, Time index n’, ’h[n]
7’7 7);

//Example: y[n]—y[n—1]40.9y [n—-2]=x[n];a=[1] b=[1 —1
0.9]

14



Figure 3.1: To determine the impulse response of a system given a difference
equation

12 //n determines the length of the impulse response
required

13 //Result:10 samples of h[n
]=[1,1,0.1,-0.8,-0.89,—-0.17,0.631,0.784,
0.2161,—0.4895]
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Experiment: 4

Frequency response of the LTI
system

Scilab code Solution 4.1 To plot the frequency response of a Digital sys-
tem

//scilab 5.5.2 ., OS: Ubuntu 14.04
//To determine the frequency response of a discrete—
time system from its difference equation

//Design steps: Given a0 y[n] = —a2 y[n—2] — al y[n
—1] + b0 x[n] + bl x[n—1] + b2 x[n—2]
//1. System function H(z) = b0 + bl =z —1 + b2 z

-2/ 1+ al z =1 + a2 =z -2
//2. Put z= e (jw) to get the frequency response
//Design example: Plot the magnitude and phase
response of the system represented by

//6y [n]+5y [n—1]+y[n—2]= 18x[n] + 8x[n—1]

clear;clc;

close;

b=input (’Enter the coefficients of x[n]
a=input ("Enter the coefficients of y[n]

16
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Phase.

Figure 4.1: To plot the frequency response of a Digital system

//b:[18, 8]§

//a=[6 5 1];

m= 0: length(b)-1; p=0:1length(a)-1;

w=-2*%pi:%pi/100:2*%pi;//Plot over a interval of 4pi
to observe periodicity

num = bx* exp(-%i*m’*w);

den = axexp(-%i*p’*w);

H= num./den;

magH = abs(H); angH= atan(imag(H),real (H));

figure;

subplot (211), plot( w, magH);

xtitle ("Magnitude response’, Frequency in rad’,
Magnitude ) ;

subplot (212) ,plot(w, angH);

xtitle ("Phase Response’, Frequency in rad’, "Phase’);

//Expected result

//H =[5,3.5802695 — 1.38814671,2.6 — 1,2.253303 —
0.47853411,2.1666667,2.253303 + 0.47853411 ,2.6 +
1,3.5802695 + 1.38814671,5]

)
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Experiment: 5

Linear and Circular convolution

Scilab code Solution 5.1 To determine linear convolution

//scilab 5.5.2 | OS: Ubuntu 14.04
// Linear Convolution in time and frequency domain

clc ;clear all;close ;

x=[1 2 3 4];//input (’enter the input sequence

values x(n)= "); // 11 2 3 4]

h=[1 -1 0 -1];//input(’enter the impulse sequence
values h(n) = 7);..// [1 -1 0 —1]

L1 = length(x);

L2 = length(h);

//Method 1 Using Direct Convolution Sum Formula
for i = 1: L1 +L2 -1

conv_sum = O0;

for j = 1: 1

if ((Ci -3 +1) <= 12 ) &( j <= 11 ) )

conv_sum = conv_sum + x ( j ) * h (i -j +1) ;
end ;
y(i) = conv_sum ;

18
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end ;
end ;

disp(y,’ Convolution Sum using Direct Formula Method

=)

//Method 2 Using In built Function

f = convol(x,h)

disp(f, ’7 Convolution Sum Result using Inbuilt
Function = 7)

//Method 3 Using frequency Domain multiplication

N = L1 +L2 -1; //
Linear convolution output length

x = [ x zeros(1l ,N - L1 ) 1;

h=[h zeros(1 ,N - L2 ) 1;

f1 = fft(x)
f2 = fft(h)
f3 = f1.*x f2 ; //

Multiplication in frequency domain

f4 = ifft (£3)

disp (f4 , ’'Convolution Sum Result DFT and IDFT
method = 7)

//To plot input, impulse and output signals.
subplot (5,1,1) ;plot2d3(x);xtitle(’Input signal x ’

,'n’,’x[n] )

subplot(5,1,2) ;plot2d3(h);xtitle(’Impulse signal h’
0, hn] )

subplot (5,1,3) ;plot2d3(y);xtitle(’Liner Convolution
using formula’,’n’,’yl[n]|’);

subplot(5,1,4) ;plot2d3(f);xtitle(’Linear
Convolution using Inbuilt function’,’'n’,’y2[n]’);

subplot (5,1,5) ;plot2d3(f);xtitle(’Linear
Convolution using DFT method’, 'n’,’y3[n]’);

// Expected result
/1. 1. 1. 0. — 6. — 3. — 4,

19
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Figure 5.1: To determine linear convolution

Scilab code Solution 5.2 Circular convolution in time domain and using
DFT relations

//scilab 5.5.2 | OS: Ubuntu 14.04

// Circular convolution of given discrete sequences
in time domain (Matrix method)

clear;clc;

x1=input (’enter the first sequence values x1(n)= 7)
; [/ 11 23 4]

x2=input ("enter the second sequence values x2(n) =
) //[1 =1 0 —1]

L1 = length(x1); //length of
first sequence

L2 = length(x2); //length of
second sequence

bl
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length of x1 and x2 are Equal

if (L1 >L2)
for i1 = L2+1
x2(1i) = 0;
end

elseif (L2>L1)

for i = L1+1:

x1(i) = 0;
end
end

N = length(x1);
x3 = zeros(1,N)

Circular convolution

a(1l) = x2(1);

for j = 2:N
a(j) = x2(N-j

end

for i =1:N

x3(1) = x3(1)+x1(i)*a(i);

end
X(1,:)=a;

// Calculation of circular

for k = 2:N
for j =2:N
x2(j) =
end

x2 (1)
X(k,:)=
for i = 1:N
a(i) =
x3(k) =
end
end

;L1

L2

3

+2) ;

a(j-1);

a(N);
X2 ;

x2(1);

x3(k)+x1(i)*a(i);

convolution

//To make

//x3

disp(X, ’Circular Convolution Matrix x2[n]=")
disp(x3,’Circular Convolution Result x3[n] = )

// Expected res

ult
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// Circular Convolution Matrix x2[n]=

// 1.
/] - 1.
// 0. -—
/] — 1.

1.
0.
1
1

O = =

//Circular Convolution Result x3[n]| =
/] —-5. —2. -3. 0.

// Circular Convolution in frequency domain (DFT—
IDFT method)

clear all;clc;close;

x1=input (’enter the first sequence values x1(n)= ’)
/) 123 4

x2=input (’enter the second sequence values x2(n) =
); //[1 =1 0 —1]

L=input (’enter the length of the sequence values L=

Y

RERVYE
//Computing DFT
X1 = fft(x1l,-1); //—1 for direct
FFT

X2 = fft(x2,-1);
disp (X1, 'DFT of x1[n] is Xl1(k)=")
disp (X2, 'DFT of x2[n] is X2(k)=")

//Multiplication of 2 DFTs

X3 = X1.x%xX2;

disp (X3, 'DFT of x3[n] is X3(k)=")

x3 =(fft(X3,1)) //
Circular Convolution Result ;1 for IFFT

disp(x3, 'Circular Convolution x3[n]=")

//// Expected result

//DFT of x1[n] is X1(k)= 10, — 2.+ 2.i — 2.

— 2. — 2.1

22



77 //DFT of x1[n] is X2(k)= — 1. 1. 3. 1.
78

79 // DFT of x3[n] is X3(k)= - 10. — 2. + 2.1 —
6. — 2. — 2.1

80

81 //Circular Convolution x3[n]= —5. —2.
—3. 0.

82

83 ////Performing Linear Convolution using Circular
Convolution

84 clear;clc;

85 x=input (’enter the input sequence values x(n)= 7);
/) (123 4]

86 h=input (’enter the impulse sequence values h(n) = 7)
/1 -1 0 -1

87 N1 = length(x); //Length of input signal

88 N2 = length(h); //Length of impulse response

89

90 N = N1+N2-1 // Length of

output response

91 disp(N, 'Length of Output Response y(n)’)

92

93 //Padding zeros to Make Length of 'h’ and ’'x’ equal
to length of output response 'y’

94

95 hil1 = [h,zeros(1,N-N2)1];

96 x1 = [x,zeros(1,N-N1)];

97
98 H = fft(hl,-1);
99 X = fft(xl,-1);

100 //Multiplication of 2 DFTs

101 Y = X.x*xH

102 y =(£f£ft(Y,1)) //Linear Convolution Result
103

104 disp (X, DFT of i/p X(k)=")

105 disp(H, 'DFT of impulse sequence H(k)=")

106 disp (Y, 'DFT of Linear Filter o/p Y(k)=")

107 disp(y, 'Linear Convolution result y[n]=")

23
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//Expected output
//Length of Output Response y(n)

//DFT of i/p X(k)=

10.

— 2.0244587 —

7.

0.3460107 + 2.4791213 1

0.1784479 +

0.3460107 — 2.47912131

6.22398171
0.1784479 — 2.4219847i |
2.42198471

2.0244587 + 6.22398171

//DFT of impulse sequence H(k)=

1.2774791 + 1.21571521 . 0.5990311 +
0.19309641 2.1234898 + 1.40881171
2.1234898 — 1.40881171 ; 0.5990311 —
0.19309641 1.2774791 — 1.21571521
//DFT of Linear Filter o/p Y(k)= — 10.
4.9803857 — 10.4121711 , — 0.2714383 +
1.55188431 3.7910526 — 4.89166021
3.7910526 4+ 4.89166021 , — 0.2714383 —
1.55188431 4.9803857 + 10.4121711
//Linear Convolution result y[n]= 1.
1. 0. —6. —3. —4.

- 1.

9

?

Y

Y

Y

)

24
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Experiment: 6

Spectral analysis using DFT

Scilab code Solution 6.1 To demonstrate spectral leakage

//scilab 5.5.2 | OS: Ubuntu 14.04

// Spectral Leakage

//Check the result for the following cases
//case (1): fm=10;fs=125;m=1;m=number of cycles
//case (2): fm=10;fs=125;m=2;

//case(3): fm=200;fs=10000;m=2.5;

//case (4): fm=T75;fs =250;m=3;

clc;clear;close;

//fm=input (’Enter the frequency of the input signal

") ;//message frequency in Hz
//fs=input (’Enter the sampling frequency ’);//
sampling frequency in Hz

//m=input ("Enter the number of cycles of the input

signal ") ;// Number of cycles
//Case2:No spectral leakage

fm=10;fs=125;m=2; //Oversampling and integer number

of cycles
t=0.0001:1/fs:m/fm;
x=3%cos (2*)pi*fm*t) ; //signal

25
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N=(m*xfs/fm) ; //should be non-—
integer to obtain spectral leakage
for k=1:N
X1(k)=0;
for n=1:length(x)
X1 (k)=X1(k)+x(n) .*xexp((-%1i) .*2.x%pi.*(n-1) .*x(k-1)
NG
end
end
k=0:N-1
f=k*xfs/N; //frequency axis in Hz
figure (1) ,subplot (221) ,plot2d3(t,x),xlabel(’time’),
ylabel(’x(n)’),title(’No leakage: m=2, f=10 and
Fs=125 Hz’) ,subplot (223) ,plot2d3(f,abs(X1)),
xlabel (’freq in Hz’),ylabel(’Mag’);//Case 3:
Spectral leakage
fm=10;fs=125;m=2.5; //Oversampling and integer
number of cycles
t=0.0001:1/fs:m/fm;

x=3*xcos (2*pi*xfm*t) ; //signal

N=(mxfs/fm); //should be non-—
integer to obtain spectral leakage

for k=1:N

X1(k)=0;

for n=1:length(x)
X1 (k)=X1(k)+x(n) .*xexp((-%1i) .*2.x%pi.*(n-1) .*x(k-1)
N
end
end
k=0:N-1
f=kxfs/N; //frequency axis in Hz
figure (1) ,subplot (222) ,plot2d3(t,x),xlabel(’time’),
ylabel(’x(n)’),title(’Spectral leakage: m=2.5, f
=10 and Fs=125 Hz ') ,subplot (224) ,plot2d3(f,abs (X1
)) ,xlabel (' freq in Hz’),ylabel (’Mag’)
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Figure 6.1: To demonstrate spectral leakage

Scilab code Solution 6.2 To demonstrate effects of zeropadding and zero
insertion on the spectrum

//scilab 5.5.2 | OS: Ubuntu 14.04

// Effect of zero padding and interpolation

/] Effect of Zero padding

clc;clear;close;

x= input (’enter the input sequence values x(n)= ");
/11 2 3 4]

k= input (’enter the number of zeros to be padded= ’

); //1020 (For 1024 point DFT))
N=length(x);
x_pad=[x zeros(1l,k)];
Ni=length(x_pad);
f=0:N-1;
f1=0:N1-1;
X=abs (fft (x));
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X_pad= abs(fft(x_pad));

figure (1) ;

subplot (221) ,plot2d3(x),title(’ Original sequence’),
subplot (223) ,plot2d3 (f,X), title(’Spectrum of
Original sequence’);

subplot (222) ,plot2d3(x_pad),title(’Zero—padded
sequence ') ,subplot (224), plot2d3 (f1,X_pad),title
(’Spectrum of Zero—padded sequence’)

//// Effect of inserting zeros in between samples (
Interpolation)

x= input (’enter the input sequence values x(n)= 7);

/11 2 3 4]
k= input (’enter the number of zeros to be inserted=
");//2 (Vary and observe effect of zero

interpolation)

x_mod=1[];

N=length (x);

//

for i= 1: N

x_mod=[x_mod, x(i), zeros(1,k)];

end

Ni=length(x_mod) ;

f=0:N-1;

f1=0:N1-1;

X=abs (fft(x));

X_mod= abs(fft(x_mod)) ;

figure (2);subplot (221) ,plot2d3(x),title(’ Original
sequence ') ,subplot (223) ,plot2d3 (f,X), title(’
Spectrum of Original sequence’);

subplot (222) ,plot2d3(x_mod) ,title( ' Zero—interpolated
sequence ') ,subplot (224), plot2d3 (f1,X_mod),
title (’Spectrum of Zero—inserted sequence’)
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Experiment: 7

FIR filter design

Scilab code Solution 7.1 Design of FIR filter using Windowing method

//scilab 5.5.2 | OS: Ubuntu 14.04

//Design of FIR filters using windowing

// Design a digital FIR low pass filter with
following specifications.

//a) Pass band cut—off frequency T Wp=
,,,,,,,,,, radians

//b) Pass band ripple STp=__ dB

//c¢) Stop band cut—off frequency DW=
,,,,,,,,,, radians

//d) Stop band attenuation STrS=
,,,,,,,,,, dB

//Choose an appropriate window function and
determine impulse response and provide a plot of
frequency response of the designed filter.

//Design example:

//Design a digital FIR low pass filter with
following specifications.

//a) Pass band cut—off frequency 0.3 rad

//b) Pass band ripple :0.25 dB
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//c¢) Stop band cut—off frequency :0.45 rad
//d) Stop band attenuation : 50 dB
clc;
clear;
close;
wp=input ( "enter the pass band edge in rad’);
ws=input ("enter the stop band edge in rad’);
rs=input (’enter the stop band ripple in dB’);
freq_points=1024;
freq_divs=(freq_points/2) -1;
k=4; //Hamming window (decided based on stop band
attenuation)
trw=ws-wp,;
N=(k*2*x%pi/trw);
N=ceil (N);
remainder=N-fix (N./2) .*2
if remainder==
N=N+1;
end

WC=Wp;
aph=(N-1)/2;
for n=0:N-1
if n==aph
hdn_minusalph(n+1)=wc/%pi;

else
hdn_minusalph(n+1)= sin(wc.*(n-aph)) ./ (l%pi.*(n-
aph));

end

end

n=0:N-1,;
wndw=window ( 'hm’,N) ;

hn=hdn_minusalph.*wndw’;
figure (1) ;subplot (311);plot2d3(n,wndw);xlabel(’'n’);
ylabel ('wndw ') ;title (’"Hamming Window function ’);
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subplot (312);
ylabel ("hdn_minusalph ’);title (' Impulse response
of IIR filter ’);

subplot (313);

;title ("Impulse

//omega=0:%pi/freq_divs: %pi;
h=[hn’ zeros(l,freq_points-length(hn))]l;;//For a
1024 point DFT

H=fft (h) ;

H_mag=20%*1logl0(abs (H));
H_ang=atan(imag(H) ,real (H));
H_phase=unwrap (H_ang) ;
w=(0:freq_divs)./(freq_points);

wl=w*x%pi;

plot2d3(n,hdn_minusalph);xlabel(’'n’);

plot2d3(n,hn);xlabel(’'n’);ylabel( ’hn’)
response of FIR filter ’);

figure (2);subplot (211) ,plot2d(wl,H_mag(1:512));
xtitle ("Magnitude response’,’w (rad)’, Magnitude (dB)

7);

subplot (212) ,plot2d(wl,H_phase(1:512));
xtitle (’Phase Response’,’w (rad)’, Phase (rad)’);

//Problems:

//1. Design a digital FIR low pass

following

//a) Pass
//b) Pass
//¢) Stop
//d) Stop

band
band
band
band

specifications .

cut—off frequency
ripple

cut—off frequency
attenuation

//2. Design a digital FIR low pass

following

//a) Pass
//b) Pass
//¢) Stop
//d) Stop

band
band
band
band

specifications .

cut—off frequency
ripple

cut—off frequency
attenuation

filter

:0.

0.

4

6

filter

:0.

:0.

25

3

with

rad
:0.25 dB

rad
44 dB

with

rad
:0.25 dB
rad
50 dB
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Figure 7.1: Design of FIR filter using Windowing method
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Figure 7.2: Design of FIR filter using Windowing method
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Experiment: 8

Design of Hilbert transformer
using FIR filter

Scilab code Solution 8.1 Design of a digital Hilbert Transformer using
FIR filter

//scilab 5.5.2 ., OS: Ubuntu 14.04

//Design a differentiator using a Hamming window of
length N=21. Plot the time and frequency domain
responses .

//Design a length —25 digital Hilbert transformer
using a Hann window.

//Design of Hilbert transformer

//The ideal frequency response of a linear phase
Hilbert transformer is given by

//Hd(e jw) = —joe(—=j] w ), 0 < w < pi

// joe(=j w ), —pi<w<O

//The ideal impulse response is given by
//hd(n— )= 2/pi  (sin2 pi( n )/2) / (n
) n

// 0, n=
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//Scilab Program
//Inputs: Window length and type of window
clc;clear;close;

N = 41;//input (" enter the window length”); //55
freq_points=1024;
windowfn =window (’hm’,N);// Hamming window ()Window
type can be changed here)

m = 0:N-1;
aph = (N-1)/2;
for n=0:N-1

if n==aph

hd (n+1)=0;

else
hd (n+1)=(2/%pi) *((sin ((%pi/2) *(n-aph))."2) ./(n-
aph));

end

end

n=0:
hn

_1’
hd . *windowfn ’;

=

omega=-%pi:2*%pi/(freq_points-1) :%pi;

z=%hz;

denl=real(z"(N-1));
num=0;

for n=0:N-1

num=num+ (hn(n+1) .z~ (N-n-1));

end

numl=real (num) ;
Hz=numl./denl;
w=exp (%i*omega) ;
rep=freq(Hz ("num”) ,Hz("den”) ,w) ;
magH=abs (rep) ;
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Figure 8.1: Design of a digital Hilbert Transformer using FIR filter

figure;subplot (211) ,plot2d3(m,hn) ,xtitle (' Impulse
response’,’'n’ "h[n] ")

, subplot (212) ,plot2d(omega ,magh) ;

xtitle (’Magnitude response’,’w (rad)’,’ Magnitude’) ;

//Expected result

//Magnitude response graph
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Experiment: 9

Design of digital differentiator
using FIR filter

Scilab code Solution 9.1 Design of Digital Differentiator using a FIR fil-
ter

11//scilab 5.5.2 | OS: Ubuntu 14.04

//Design a differentiator using a Hamming window of
length N=21. Plot the time and frequency domain
response

//Inputs: Window length and Type of window

//The frequency response of a linear —phase ideal
differentiator is given by

//Hd(e jw) = ] , 0< <

// —jw , — < <0

//The ideal impulse response of a digital
differentiator shifted by with linear phase is
given by

//hd( n ) =  cos (n ) / (n - ). n

// 0, n=

//Scilab Program:
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clc;clear;close;

N = 41;// input(”enter the window length”);

freq_points=1024;

windowfn =window(’hm’,N);//Hamming wuindow (Try with

different windows)
m = 0:N-1;
aph = (N-1)/2;
for n=0:N-1
if n==aph
hd (n+1)=0;

else
hd(n+1)= cos(%pi*(n-aph))./(n-aph);

end

end

n=0:N-1,;

hn = hd.*windowfn’;

omega=-%pi:2*%pi/(freq_points-1) :%pi;

z=%hz;

denl=real(z"(N-1));

num=0;

for n=0:N-1
num=num+(hn(n+1) .z~ (N-n-1));

end

numl=real (num) ;

Hz=numl./denli;

w=exp (%i*omega) ;

rep=freq(Hz ("num”) ,Hz("den”) ,w) ;

magH=abs (rep) ;

figure;subplot (211) ,plot2d3(m,hn) ,xtitle (' Impulse
response ', ’'n’, ’h[n]’),subplot (212) ,plot2d (omega,

magH) ;

xtitle (’Magnitude response’,’w (rad)’, Magnitude’) ;

//Expected result
//Magnitude response graph
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Experiment: 10

Design of IIR filter

Scilab code Solution 10.1 Design of digital Butterworth lowpass filter

//scilab 5.5.2 | OS: Ubuntu 14.04

//Program To Design the Digtial Butterworth IIR
Filter

//Design a digital IIR low pass filter with
following specifications.

//a) Pass band cut—off frequency :1000 Hz

//b) Pass band ripple :—1 dB
//c¢) Stop band cut—off frequency :3000 Hz

//d) Stop band attenuation : —15 dB

//Sampling frequency: 15000 Hz

clear all;clc;close;

f1=1000; //input (’Enter the pass band edge(Hz)= 7);

£2=3000; //input (’Enter the stop band edge(Hz)= ");

ki=-1;//input (’Enter the pass band attenuation (dB)=
7)’

k2=-15; //input (’Enter the stop band attenuation (dB)=

)

fs=10000; //input ('Enter the sampling rate(Hz)= 7);

// Digital filter specifications (rad)
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wl=2x*%pixfi1*x1/fs;
w2=2x*Ypi*xf2*x1/fs;

//Pre warping
ol=2xfsxtan(wl/2)
02=2xfsxtan(w2/2)

//Design of analog filter

n=1ogl10(((10.7(-k1/10))-1)/((10.7(-k2/10))-1)) ./ (2%
log10(o1/02));

n=round (n) ;

wn= 02./((10.7(-k2/10) -1) .~ (1/(2%*n)));

//[h,poles ,zeros ,gain]=analpf(n, butt’ [0 0],wn)hb.
dt = ¢’
//[fr ,hr]=repfreq (hb, fmin , fmax)

h=buttmag(n,wn,1:2*%pixfs);
mag=20*1og10(h) ’;

//Converting analog to digital filter
hz=iir(n, 'lp’, "butt’,0.25,[])
//gxpoly(z, z") /poly(p,’z")

(hzm, fr]l=frmag (hz,256) ;
magz=20*1ogl10 (hzm) ’;

subplot (2,1,1) ,plot2d ((1:2*x%pi*fs)’,mag),xtitle(’
Analog IIR filter: lowpass’, Analog frequency in
rads/sec’, ’dB’,’ ’);subplot(2,1,2),plot2d(fr,
magz);xtitle(’Digital IIR filter: lowpass 0 < fr
< 0.5, frequency’, 'dB’,’ 7);

//note: Use zoom/axis commands to verify the design.
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Figure 10.1: Design of digital Butterworth lowpass filter

Scilab code Solution 10.2 Design of Digital Chebyshev lowpass filter

//scilab 5.5.2 ., OS: Ubuntu 14.04

//Program To Design the Digtial Chebyshev IIR Filter

////Design example:

//Design a digital IIR low pass filter with
following specifications.

//a) Pass band cut—off frequency :1000 Hz

//b) Pass band ripple :—1 dB
//c¢) Stop band cut—off frequency :3000 rad
//d) Stop band attenuation : —15 dB

//Sampling frequency: 15000 Hz

clear all;clc;close;

£1=1000; //input ("Enter the pass band edge(Hz)
£2=3000; //input (’Enter the stop band edge(Hz)
rp=-1;//input (’Enter the pass band ripple(dB)= 7);

~— —
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rs=-15; //input ('Enter the stop band attenuation (dB)=
)

fs=10000; //input ('Enter the sampling rate(Hz)= 7);

//Digital filter specifications (rad)

wl=2x*Ypixf1*x1/fs

w2=2*Ypi*xf2*x1/fs

//Pre warping

ol1=2xfs*xtan(wl/2)

02=2xfs*xtan(w2/2)

or=02/o01;//Stop—band edge of normalized lowpass
filter

A2 =10."(-rs/10);

A=sqrt (A2);

epsilon2 = (10."(-rp/10)-1);

epsilon=sqrt(epsilon2)

g=((A2-1) ."0.5./epsilon)

N = (acosh(g))/(acosh(or))

N = ceil (N)

oc=o01;

//[pols ,gn] = zpchl (N, epsilon ,o0l)

Y

//Hs = poly(gn,’s’, coeff ’)/real (poly(pols,’s’))

h=cheblmag(N,oc,epsilon,1:2%%pix*fs);

mag=20*x1ogl0(h) ’;

//plot2d ((1:1000) *,mag,[2],7011” ,” 7 [ymax,ymin,fmax
, fmin |)

// gain=20xlogl0 (abs(h_s)); %Verify the specification

[k1,k2] at prewarped frequencies

//subplot (211);

//plot (omega, gain) ;

//xlabel( frequency in rad/sec );

//Converting analog to digital filter

fc=wl/(2*%pi);

deltal=(1-(1./A2));

//1=ripple in passband

hz=iir (N, 'lp’, ’chebl ’,[fc],[deltal 0]);

//for chebl filters 1—delta(l)<ripple<l in passband

//gxpoly(z,’z") /poly(p, z")
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Figure 10.2: Design of Digital Chebyshev lowpass filter

49 [hzm,fr]l=frmag(hz,256) ;

50 magz=20*1ogl0 (hzm) ’;

51 figure (1) ;subplot(2,1,1),plot2d ((1:2x%pix*xfs)’,mag),
xtitle (" Analog IIR filter: lowpass’,  Analog

frequency in rads/sec’, 'dB’,’ ’);subplot(2,1,2),
plot2d (fr,magz);xtitle(’Digital IIR filter:
lowpass 0 < fr < 0.57, frequency’, 'dB’,’ 7);
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Experiment: 11

Application of IIR filter

Scilab code Solution 11.1 To design a digital IIR Butterworth filter to

suppress noise

//scilab 5.5.2 |

// This program will

clear all;clc;close;

fi=input ("Enter
f2=input ("Enter
ki=input ("Enter
k2=input ("Enter
fs=input ('Enter

signal_fo=1000;
noise_£f0=4000;

//Digital filter

OS: Ubuntu 14.04
suppress noise at f=4000 Hz
using Butterworth prototype
//pass band edge=f1=1500Hz
//stop band edge=f2=2000 Hz
//sampling rate =Fs=10000 Hz = 1/Ts
//passband attenuation = —1db
//stop attenuation

the
the
the
the
the

= —3 db

pass band edge(Hz)= ’);
stop band edge (Hz)= ’);
pass band attenuation (dB)
stop band attenuation (dB)
sampling rate (Hz)= ’);

specifications (rad)
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wl=2x*%pixfi1*x1/fs;
w2=2x*Ypi*xf2*x1/fs;

//Pre warping
ol=2xfsxtan(wl/2)
02=2xfsxtan(w2/2)

//Design of analog filter

n=1ogl10(((10.7(-k1/10))-1)/((10.7(-k2/10))-1)) ./ (2%
log10(o1/02));

n=round (n) ;

wn= 02./((10.7(-k2/10) -1) .~ (1/(2%*n)));

//[h,poles ,zeros ,gain]=analpf(n, butt’ [0 0],wn)hb.
dt = ¢’
//[fr ,hr]=repfreq (hb, fmin , fmax)

h=buttmag(n,wn,1:2*%pixfs);

mag=20*x1ogl0(h) ’;

//plot2d ((1:2% %pixfs )’ ,mag)

//xtitle (?Analog IIR filter: lowpass’,’ Analog
frequency in rads/sec’, dB’,’ 7);

//Converting analog to digital filter
hz=iir(n, ’lp’, "butt’,0.25,[])
//gxpoly(z,’z") /poly(p,’z")

[hzm,fr]=frmag (hz,256) ;
magz=20%*10og10 (hzm) ’;

fri=fr*xfs;
//figure;plot2d (fr1’ ,magz’);xtitle ('Digital IIR
filter: lowpass 0 < fr < 0.57, frequency ', ’dB’ )’
)

//////note: Use zoom/axis commands to verify the
design .

//These coefficients are to be read from variable hz

(line 41, output of iir function)
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num=[0.2928 0.5858 0.2928];
den=[1 0 0.1716];// In negative powers of z

//Signal generation (sine wave of frequency 1000 Hz)
of length 1 second

t=0:1/fs:10/signal_fo;//10 cycles of input

original_signal=sin(2*%pi*signal_fox*t);

//Noise generation (sine wave of frequency 4000 Hz)
of length 1 second

t=0:1/fs:10/signal_fo;

noise=sin(2x%pi*noise_foxt);

noisy_signal=original_signal+noise;
filter_output=filter (num,den,noisy_signal);
//Plot original ; noisy and filtered outputs

figure;subplot(3,1,1), plot2d(t,original_signal),
xtitle(’Original_signal ’,’t 7, 'x(t) "),

subplot (3,1,2), plot2d(t,noisy_signal) ,xtitle(’
Noisy_signal ’, 't ", 'n(t) "),

subplot (3,1,3), plot2d(t,filter_output) ,xtitle(’
Filtered_signal’,’t’, y(t));

li=length(original_signal);

12=1ength(noisy_signal);

N=512;

x=[original_signal zeros(1,N-11)];//To make it of
length 512

n=[noisy_signal zeros(1,N-11)];

y=[filter_output zeros(1,N-11)];

X=fft(x);

N=fft(n);

Y=fft (y);

f=(0:511) xfs;

figure;

subplot (3,1,1), plot2d(f,abs(X)),xtitle(’
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Figure 11.1: To design a digital ITR Butterworth filter to suppress noise

Original_signal’,'F’,'X(f) "),

83 subplot(3,1,2), plot2d(f,abs(N)),xtitle(’
Noisy_signal ’, 'F’,’N(f) "),

84 subplot(3,1,3), plot2d(f,abs(Y)),xtitle(’
Filtered_signal ’,'F’,’Y(f)");
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Figure 11.2: To design a digital ITR Butterworth filter to suppress noise
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Experiment: 12

Design of Notch filter

Scilab code Solution 12.1 Suppression of noise at a given frequency using
Notch filter

//scilab 5.5.2 | OS: Ubuntu 14.04

//Program To Design a simple notch filter and verify

// Design a simple notch filter to stop a
disturbance with frequency F_0=3.5 kHz and a
sampling frequency F_s=8 kHz.

//Also, verify the notch filter operation by adding
a sinewave of F_0 Hz to a speech signal, filter
and verify .

//Scilab Program:
clc;clear;close;
£=3500; //input (” Enter the frequency in Hz”);
//3500
£s=8000; //input (" Enter the sampling rate”);
//8000
r=0.98; //input (” Enter the radius of the pole in the
z—plane”); //0.98
w=2*Ypi*xf/fs;
zl=exp (hi*w);
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z2=exp (-%hixw);

pl=r*xexp (hixw) ;

p2=r*xexp (-%hix*w) ;

z=%z;

numl=(real ((z-z1)*(z-22)))

deni=(real (((z-pl)*(z-p2))))

Hz=numl./denl

//figure (1) ;plzr (Hz);zgrid ()

[hl1 fr]=frmag(Hz,512)

figure (1) ;plot2d(fr*fs,hl);xtitle (’Magnitude

Y

response ', "frequency in Hz’, "Mag’) ;
//Noise generation

original_signal=wavread ( home/hyrkswamy /kswamy/
Coursework /SAP/wav/mask . wav ') ;
t=0:1/fs:(length(original_signal)-1)/fs;
noise=sin (2x%pi*xf*t);
noisy_signal=original_signal+noise;

filter_output=filter (numl,denl ,noisy_signal);

//Play back the original , noisy and filtered outputs
playsnd(original_signal,hfs);

pause;

playsnd(noisy_signal ,fs);

pause;

playsnd(filter_output ,fs);
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Figure 12.1: Suppression of noise at a given frequency using Notch filter
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Experiment: 13

Design of Resonator

Scilab code Solution 13.1 Design of a Notch filter to filter noise at a given
frequency

//scilab 5.5.2 | OS: Ubuntu 14.04

//Design a digital resonator that resonates at 1000
Hz. Assume Fs=8000 Hz.

// Calculate the pole location

[ /w=2xpixf/fs;

//Complex conjugate pair of poles at w=pi/4 and —pi
/4

//Assume radius=0.98 (near to unit circle but inside

the unit circle)

//Scilab Program:
clc;
clear;
close;
£=1000; //input (" Enter the frequency in Hz”);
//1000
fs=8000; //input (" Enter the sampling rate”);
//8000
r=0.98; //input (" Enter the radius of the pole in the
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Figure 13.1: Design of a Notch filter to filter noise at a given frequency

z—plane” ) ; //0.98
w=2x*Y%pi*f/fs;
polel=r*exp (%hi*w);
pole2=rxexp (-%ixw);

z=%Z;

numl=real (z~(2));

denl=real(z~(2) -1.3859293*%z+0.9604) ;

Hz=numl./denl;
//figure ;

//plzr (Hz);

[h1 fr]l=frmag(Hz,1024) ;
figure;

plot2d (fr*xfs,hl);

xtitle ("Magnitude response’, frequency

.
b

in Hz’, 'Mag’)
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