
Scilab Manual for
Digital Signal Processing Lab

by Dr R Kumaraswamy
Electronics Engineering

Siddaganga Institute Of Technology1

Solutions provided by
Dr R Kumaraswamy

Electronics Engineering
Siddaganga Institute Of Technology

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in



1



Contents

List of Scilab Solutions 3

1 Discrete-time signals 6

2 Verification of Sampling Theorem 11

3 Impulse response of the LTI system 14

4 Frequency response of the LTI system 16

5 Linear and Circular convolution 18

6 Spectral analysis using DFT 25

7 FIR filter design 30

8 Design of Hilbert transformer using FIR filter 35

9 Design of digital differentiator using FIR filter 38

10 Design of IIR filter 41

11 Application of IIR filter 46

12 Design of Notch filter 51

13 Design of Resonator 54

2



List of Experiments

Solution 1.1 Representation of discrete time signals . . . . . . 6
Solution 2.1 To verify Sampling theorem in Time domain . . . 11
Solution 3.1 To determine the impulse response of a system given

a difference equation . . . . . . . . . . . . . . . . 14
Solution 4.1 To plot the frequency response of a Digital system 16
Solution 5.1 To determine linear convolution . . . . . . . . . . 18
Solution 5.2 Circular convolution in time domain and using DFT

relations . . . . . . . . . . . . . . . . . . . . . . . 20
Solution 6.1 To demonstrate spectral leakage . . . . . . . . . . 25
Solution 6.2 To demonstrate effects of zeropadding and zero in-

sertion on the spectrum . . . . . . . . . . . . . . 27
Solution 7.1 Design of FIR filter using Windowing method . . 30
Solution 8.1 Design of a digital Hilbert Transformer using FIR

filter . . . . . . . . . . . . . . . . . . . . . . . . . 35
Solution 9.1 Design of Digital Differentiator using a FIR filter 38
Solution 10.1 Design of digital Butterworth lowpass filter . . . . 41
Solution 10.2 Design of Digital Chebyshev lowpass filter . . . . 43
Solution 11.1 To design a digital IIR Butterworth filter to sup-

press noise . . . . . . . . . . . . . . . . . . . . . . 46
Solution 12.1 Suppression of noise at a given frequency using Notch

filter . . . . . . . . . . . . . . . . . . . . . . . . . 51
Solution 13.1 Design of a Notch filter to filter noise at a given

frequency . . . . . . . . . . . . . . . . . . . . . . 54

3



List of Figures

1.1 Representation of discrete time signals . . . . . . . . . . . . 9
1.2 Representation of discrete time signals . . . . . . . . . . . . 10

2.1 To verify Sampling theorem in Time domain . . . . . . . . . 13

3.1 To determine the impulse response of a system given a differ-
ence equation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 To plot the frequency response of a Digital system . . . . . . 17

5.1 To determine linear convolution . . . . . . . . . . . . . . . . 20

6.1 To demonstrate spectral leakage . . . . . . . . . . . . . . . . 27
6.2 To demonstrate effects of zeropadding and zero insertion on

the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 To demonstrate effects of zeropadding and zero insertion on

the spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1 Design of FIR filter using Windowing method . . . . . . . . 33
7.2 Design of FIR filter using Windowing method . . . . . . . . 34

8.1 Design of a digital Hilbert Transformer using FIR filter . . . 37

9.1 Design of Digital Differentiator using a FIR filter . . . . . . 40

10.1 Design of digital Butterworth lowpass filter . . . . . . . . . . 43
10.2 Design of Digital Chebyshev lowpass filter . . . . . . . . . . 45

11.1 To design a digital IIR Butterworth filter to suppress noise . 49
11.2 To design a digital IIR Butterworth filter to suppress noise . 50

12.1 Suppression of noise at a given frequency using Notch filter . 53

4



13.1 Design of a Notch filter to filter noise at a given frequency . 55

5



Experiment: 1

Discrete-time signals

Scilab code Solution 1.1 Representation of discrete time signals

1

2 // s c i l a b 5 . 5 . 2 ,OS : Ubuntu 1 4 . 0 4
3 // Genera t i on o f s i g n a l s
4

5 // Unit Sample Sequence
6 clear ;clc ;close ;

7 L = 4; // l e n g t h= 2∗L+1
8 n = -L:L; // Time index

v e c t o r
9 x = [zeros(1,L),1,zeros(1,L) ];

10 figure (1);

11 subplot (421),plot2d3(n,x),xtitle( ’ Unit Sample
s equence ’ , ’ n ’ , ’ x 1 [ n ] ’ );

12

13 // Unit s t e p f u n c t i o n
14 // c l e a r ; c l c ; c l o s e ;
15 n1=0:5

16 x1=[ones (1,6)];

17 subplot (422),plot2d3(n1,x1),xtitle( ’ Unit Step
s equence ’ , ’ n ’ , ’ x 2 [ n ] ’ )

18 // f i g u r e ( 1 ) ; p l o t 2 d 3 ( n , x ) ;

6



19 // x t i t l e ( ’ D i s c r e t e Unit Step Sequence ’ , ’ n ’ , ’ x [ n ] ’ ) ;
20

21 // Unit ramp f u n c t i o n
22 // c l e a r ; c l c ; c l o s e ;
23 L = 4; // Length o f the

s equence
24 n2= -L : L;

25 x2= [zeros(1,L ) ,0:L ];

26 ,subplot (423) ,plot2d3(n2 ,x2),xtitle( ’ Unit Ramp
sequence ’ , ’ n ’ , ’ x 2 [ n ] ’ )

27 // p l o t 2 d 3 ( n , x ) ;
28 // x t i t l e ( ’ D i s c r e t e Unit Ramp Sequence ’ , ’ n ’ , ’ x [ n ] ’ )

;
29

30 // D i s c r e t e t ime Ex po n en t i a l s i g n a l
31 // c l e a r ; c l c ; c l o s e ;
32 a =0.5; // For d e c r e a s i n g a<1 and For i n c r e a s i n g

e x p o n e n t i a l a>1
33 n3 = 0:10;

34 x3 = (a).^n3 ;

35 subplot (424),plot2d3(n3,x3),xtitle( ’ Ex po ne n t i a l
Sequence ’ , ’ n ’ , ’ x 3 [ n ] ’ )

36 // p l o t 2 d 3 ( n , x ) ; x t i t l e ( ’ E x p o n e n t i a l l y D e c r e a s i n g
S i g n a l ’ , ’ n ’ , ’ x [ n ] ’ ) ;

37

38

39

40 // S i n u s o i d a l s i g n a l
41 // c l c ; c l e a r ;
42 fm=100; // Frequency 100 Hz or input ( ’ Enter the input

s i g n a l f r e q u e n c y : ’ ) ; //100
43 k=3; // Number o f c y c l e s : 3 or i nput ( ’ Enter the number

o f Cyc l e s o f i nput s i g n a l : ’ ) ; //3
44 A=1; // Unit ampl i tude or input ( ’ Enter the ampl i tude

o f i nput s i g n a l : ’ ) ; //5
45 tm =0:1/( fm*fm):k/fm;

46 x4=A*cos (2* %pi*fm*tm);

47 subplot (425),plot2d3(tm,x4),xtitle( ’ S i n u s o i d a l
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S i g n a l ’ , ’ n ’ , ’ x 4 [ n ] ’ )
48 // f i g u r e ( 1 ) ; p l o t 2 d 3 ( tm , x ) ;
49 // t i t l e ( ’ Graph i ca l R e p r e s e n t a t i o n o f S i n u s o i d a l

S i g n a l ’ ) ;
50 // x l a b e l ( ’ Time ’ ) ; y l a b e l ( ’ Amplitude ’ ) ;
51 // x g r i d ( 1 )
52

53 // Square wave
54 // c l c ; c l e a r ;
55 t=(0:0.1:4* %pi)’;

56 x5=4*%pi*squarewave(t);

57 subplot (426),plot2d3(t,x5),xtitle( ’ Square wave ’ , ’ n ’ ,
’ x 5 [ n ] ’ )

58

59

60 // T r i a n g u l a r wave
61 // c l e a r ; c l c ;
62 A=5 // input ( ’ e n t e r the ampl i tude : ’ ) ; //5
63 K= 2// input ( ’ e n t e r number o f c y c l e s : ’ ) ; //2
64 x6 = [0:A A-1: -1:1];

65 x7=x6;

66 for i=1:K-1

67 x7=[x7 x6];

68 end

69 n7=0: length(x7) -1; // Index o f the s equence
70 subplot (427),plot2d3(n7,x7);xtitle( ’ T r i a n g u l a r wave ’

, ’ t ime ’ , ’ ampl i tude ’ );
71

72 // Sawtooth wave
73 // c l c ; c l e a r ;
74 A=5 // input ( ’ e n t e r the ampl i tude : ’ ) ; //5
75 K=2; // input ( ’ e n t e r number o f c y c l e s : ’ ) ; //2
76 x8 = [0:A];

77 x9=x8;

78 for i=1:K-1

79 x9=[x9 x8];

80 end

81 n9=0: length(x9) -1;
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Figure 1.1: Representation of discrete time signals

82 subplot (428),plot2d3(n9,x9);xtitle( ’ Sawtooth wave ’ , ’
t ime ’ , ’ ampl i tude ’ );

83

84 // Complex va lued s i g n a l s
85 clc;clear;

86 n= [ -10:1:10];

87 a= -0.1+0.3*%i;

88 x=exp(a*n);

89 figure (2);

90 subplot (221), plot2d3(n,real(x));xtitle( ’ Complex
va lued s i g n a l ’ , ’ n ’ , ’ Real pa r t ’ );

91 subplot (223), plot2d3(n,imag(x));xtitle( ’ Imag inary ’ ,
’ n ’ );

92 subplot (222), plot2d3(n,abs(x));xtitle( ’ Magnitude
pa r t ’ , ’ n ’ );

93 theta =(180/ %pi)*atan(imag(x),real(x));

94 subplot (224), plot2d3(n,theta);xtitle( ’ Phase pa r t ’ , ’
n ’ );
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Figure 1.2: Representation of discrete time signals
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Experiment: 2

Verification of Sampling
Theorem

Scilab code Solution 2.1 To verify Sampling theorem in Time domain

1

2 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // Sampl ing
4 clc;clear;

5 fm=100; //=input ( ’ Enter the input s i g n a l f r e q u e n c y : ’ )
; //100

6 k=4; // input ( ’ Enter the number o f Cyc l e s o f i nput
s i g n a l : ’ ) ; //2

7 A=1; // input ( ’ Enter the ampl i tude o f i nput s i g n a l : ’ ) ;
//3

8 tm =0:1/( fm*fm):k/fm;

9 x=A*cos(2* %pi*fm*tm);

10 figure (1);

11 subplot (411),plot(tm,x);

12 title( ’ORIGINAL SIGNAL ’ );xlabel( ’ Time ’ );ylabel( ’
Amplitude ’ );

13 xgrid (1)

14

15 // Sampl ing Rate ( Nyqu i s t Rate ) =2∗fm
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16 fnyq =2*fm;

17

18 // UNDER SAMPLING
19 fs =(3/4)*fnyq;

20 n=0:1/ fs:k/fm;

21 xn=A*cos (2* %pi*fm*n);

22 // f i g u r e ( 2 ) ;
23 subplot (412),plot2d3( ’ gnn ’ ,n,xn);
24 plot(n,xn, ’ r ’ );
25 title( ’ Under Sampl ing ’ );
26 xlabel( ’ Time ’ );
27 ylabel( ’ Amplitude ’ );
28 legend( ’ Sampled S i g n a l ’ , ’ R e c on s t r u c t e d S i g n a l ’ );
29 xgrid (1)

30 //NYQUIST SAMPLING
31 fs=fnyq;

32 n=0:1/ fs:k/fm;

33 xn=A*cos (2* %pi*fm*n);

34 // f i g u r e ( 3 ) ;
35 subplot (413),

36 plot2d3( ’ gnn ’ ,n,xn);
37 plot(n,xn, ’ r ’ );
38 title( ’ Nyqu i s t Sampl ing ’ );
39 xlabel( ’ Time ’ );
40 ylabel( ’ Amplitude ’ );
41 legend( ’ Sampled S i g n a l ’ , ’ R e c on s t r u c t e d S i g n a l ’ );
42 xgrid (1)

43 //OVER SAMPLING
44 fs=fnyq *10;

45 n=0:1/ fs:k/fm;

46 xn=A*cos (2* %pi*fm*n);

47 // f i g u r e ( 4 ) ;
48 subplot (414)

49 plot2d3( ’ gnn ’ ,n,xn);
50 plot(n,xn, ’ r ’ );
51 title( ’ Over Sampl ing ’ );
52 xlabel( ’ Time ’ );
53 ylabel( ’ Amplitude ’ );
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Figure 2.1: To verify Sampling theorem in Time domain

54 legend( ’ Sampled S i g n a l ’ , ’ R e c on s t r u c t e d S i g n a l ’ );
55 xgrid (1)

56 // R e s u l t
57 // Observ ing p l o t s
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Experiment: 3

Impulse response of the LTI
system

Scilab code Solution 3.1 To determine the impulse response of a system
given a difference equation

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 //To de t e rmine the impu l s e r e s p o n s e o f a LTI system ,

g i v e n the d i f f e r e n c e e q u a t i o n y [ n]=b2 x ( n−2)+b1
x ( n−1)+ b0x ( n ) +a ( 1 ) y ( n−1)

3 clear all;clc;close;

4 b=input( ’ Enter the c o e f f i c i e n t s o f i nput x [ n]= ’ );//
[ 1 ]

5 a=input( ’ Enter the c o e f f i c i e n t s o f output y [ n]= ’ );
// [ 1 −1 0 . 9 ]

6 x=[1 zeros (1,9)]; // g e n e r a t e impu l s e s equence o f
l e n g t h 10

7 n=0:9;

8 h=filter(b,a,x);

9 figure; plot2d3(n,h),

10 xtitle( ’ Impul se r e s p o n s e h [ n ] ’ , ’ Time index n ’ , ’ h [ n ]
’ , ’ ’ );

11 // Example : y [ n]−y [ n−1]+0.9 y [ n−2]=x [ n ] ; a = [1 ] b=[1 −1
0 . 9 ]
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Figure 3.1: To determine the impulse response of a system given a difference
equation

12 //n d e t e r m i n e s the l e n g t h o f the impu l s e r e s p o n s e
r e q u i r e d

13 // R e s u l t : 1 0 sample s o f h [ n
] = [ 1 , 1 , 0 . 1 , −0 . 8 , −0 . 8 9 , −0 . 1 7 , 0 . 6 3 1 , 0 . 7 8 4 ,
0 . 2 1 6 1 , −0 . 4 8 9 5 ]
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Experiment: 4

Frequency response of the LTI
system

Scilab code Solution 4.1 To plot the frequency response of a Digital sys-
tem

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 //To de t e rmine the f r e q u e n c y r e s p o n s e o f a d i s c r e t e −

t ime system from i t s d i f f e r e n c e e q u a t i o n
3

4 // Des ign s t e p s : Given a0 y [ n ] = −a2 y [ n−2] − a1 y [ n
−1] + b0 x [ n ] + b1 x [ n−1] + b2 x [ n−2]

5 // 1 . System f u n c t i o n H( z ) = b0 + b1 z −1 + b2 z
−2 / 1 + a1 z −1 + a2 z −2

6 // 2 . Put z= e ( jw ) to g e t the f r e q u e n c y r e s p o n s e
7 // Des ign example : P lo t the magnitude and phase

r e s p o n s e o f the system r e p r e s e n t e d by
8 // 6y [ n ]+5y [ n−1]+y [ n−2]= 18x [ n ] + 8x [ n−1]
9

10

11 clear;clc;

12 close;

13 b=input( ’ Enter the c o e f f i c i e n t s o f x [ n ] ’ );// [ 1 −1] ]
14 a=input( ’ Enter the c o e f f i c i e n t s o f y [ n ] ’ );// [ 1 −0.5 ]
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Figure 4.1: To plot the frequency response of a Digital system

15 //b =[18 , 8 ] ;
16 // a =[6 5 1 ] ;
17 m= 0: length(b) -1; p=0: length(a) -1;

18 w=-2*%pi:%pi /100:2* %pi;// P lo t ove r a i n t e r v a l o f 4 p i
to o b s e r v e p e r i o d i c i t y

19 num = b* exp(-%i*m’*w);

20 den = a*exp(-%i*p’*w);

21 H= num./den;

22 magH = abs(H); angH= atan(imag(H),real(H));

23 figure;

24 subplot (211), plot( w, magH);

25 xtitle( ’ Magnitude r e s p o n s e ’ , ’ Frequency i n rad ’ , ’
Magnitude ’ );

26 subplot (212),plot(w, angH);

27 xtitle( ’ Phase Response ’ , ’ Frequency i n rad ’ , ’ Phase ’ );
28 // Expected r e s u l t
29 //H = [5 , 3 . 580 2695 − 1 . 3 88 1 4 6 7 i , 2 . 6 − i , 2 . 2 5 3 3 0 3 −

0 . 4 7 85 3 4 1 i , 2 . 1 6 6 6 6 6 7 , 2 . 2 5 3 3 0 3 + 0 . 4 7 8 5 3 4 1 i , 2 . 6 +
i , 3 . 5 8 0 2 6 9 5 + 1 . 3 8 8 1 46 7 i , 5 ]
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Experiment: 5

Linear and Circular convolution

Scilab code Solution 5.1 To determine linear convolution

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 // L i n e a r Convo lu t i on i n t ime and f r e q u e n c y domain
3

4 clc ;clear all;close ;

5

6 x=[1 2 3 4]; // input ( ’ e n t e r the input s equence
v a l u e s x ( n )= ’ ) ; // [ 1 2 3 4 ]

7 h=[1 -1 0 -1]; // input ( ’ e n t e r the impu l s e s equence
v a l u e s h ( n ) = ’ ) ; . . / / [ 1 −1 0 −1]

8

9 L1 = length(x);

10 L2 = length(h);

11

12 // Method 1 Using D i r e c t Convo lu t i on Sum Formula
13 for i = 1: L1 +L2 -1

14 conv_sum = 0;

15 for j = 1: i

16 if ((( i - j +1) <= L2 ) &( j <= L1 ) )

17 conv_sum = conv_sum + x ( j ) * h (i -j +1) ;

18 end ;

19 y(i) = conv_sum ;
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20 end ;

21 end ;

22

23 disp(y, ’ Convo lu t i on Sum u s i n g D i r e c t Formula Method
= ’ )

24

25 // Method 2 Using In b u i l t Funct ion
26 f = convol(x,h)

27 disp(f, ’ Convo lu t i on Sum R e s u l t u s i n g I n b u i l t
Funct ion = ’ )

28

29 // Method 3 Using f r e q u e n c y Domain m u l t i p l i c a t i o n
30 N = L1 +L2 -1; //

L i n e a r c o n v o l u t i o n output l e n g t h
31 x = [ x zeros(1 ,N - L1 ) ];

32 h = [ h zeros(1 ,N - L2 ) ];

33 f1 = fft(x)

34 f2 = fft(h)

35 f3 = f1.* f2 ; //
M u l t i p l i c a t i o n i n f r e q u e n c y domain

36 f4 = ifft(f3)

37 disp (f4 , ’ Convo lu t i on Sum R e s u l t DFT and IDFT
method = ’ )

38

39 //To p l o t input , impu l s e and output s i g n a l s .
40 subplot (5,1,1) ;plot2d3(x);xtitle( ’ Input s i g n a l x ’

, ’ n ’ , ’ x [ n ] ’ );
41 subplot (5,1,2) ;plot2d3(h);xtitle( ’ Impul se s i g n a l h ’

, ’ n ’ , ’ h [ n ] ’ );
42 subplot (5,1,3) ;plot2d3(y);xtitle( ’ L i n e r Convo lu t i on

u s i n g fo rmu la ’ , ’ n ’ , ’ y1 [ n ] ’ );
43 subplot (5,1,4) ;plot2d3(f);xtitle( ’ L i n e a r

Convo lu t i on u s i n g I n b u i l t f u n c t i o n ’ , ’ n ’ , ’ y2 [ n ] ’ );
44 subplot (5,1,5) ;plot2d3(f);xtitle( ’ L i n e a r

Convo lu t i on u s i n g DFT method ’ , ’ n ’ , ’ y3 [ n ] ’ );
45

46 // Expected r e s u l t
47 // 1 . 1 . 1 . 0 . − 6 . − 3 . − 4 .

19



Figure 5.1: To determine linear convolution

Scilab code Solution 5.2 Circular convolution in time domain and using
DFT relations

1

2 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // C i r c u l a r c o n v o l u t i o n o f g i v e n d i s c r e t e s e q u e n c e s

i n t ime domain ( Matr ix method )
4 clear;clc;

5 x1=input ( ’ e n t e r the f i r s t s equence v a l u e s x1 ( n )= ’ )
; // [ 1 2 3 4 ]

6 x2=input( ’ e n t e r the second s equence v a l u e s x2 ( n ) = ’
); // [ 1 −1 0 −1]

7 L1 = length(x1); // l e n g t h o f
f i r s t s equence

8 L2 = length(x2); // l e n g t h o f
s econd s equence

9
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10 if (L1 >L2) //To make
l e n g t h o f x1 and x2 a r e Equal

11 for i = L2+1:L1

12 x2(i) = 0;

13 end

14 elseif (L2>L1)

15 for i = L1+1:L2

16 x1(i) = 0;

17 end

18 end

19

20 N = length(x1);

21 x3 = zeros(1,N); // x3 =
C i r c u l a r c o n v o l u t i o n r e s u l t

22 a(1) = x2(1);

23 for j = 2:N

24 a(j) = x2(N-j+2);

25 end

26 for i =1:N

27 x3(1) = x3(1)+x1(i)*a(i);

28 end

29 X(1,:)=a;

30

31 // C a l c u l a t i o n o f c i r c u l a r c o n v o l u t i o n
32 for k = 2:N

33 for j =2:N

34 x2(j) = a(j-1);

35 end

36 x2(1) = a(N);

37 X(k,:)= x2;

38 for i = 1:N

39 a(i) = x2(i);

40 x3(k) = x3(k)+x1(i)*a(i);

41 end

42 end

43 disp(X, ’ C i r c u l a r Convo lu t i on Matr ix x2 [ n]= ’ )
44 disp(x3, ’ C i r c u l a r Convo lu t i on R e s u l t x3 [ n ] = ’ )
45 // Expected r e s u l t
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46 // C i r c u l a r Convo lu t i on Matr ix x2 [ n]=
47

48 // 1 . − 1 . 0 . − 1 .
49 // − 1 . 1 . − 1 . 0 .
50 // 0 . − 1 . 1 . − 1 .
51 // − 1 . 0 . − 1 . 1 .
52

53 // C i r c u l a r Convo lu t i on R e s u l t x3 [ n ] =
54

55 // −5. −2. −3. 0 .
56

57 // C i r c u l a r Convo lu t i on i n f r e q u e n c y domain (DFT−
IDFT method )

58 clear all;clc;close;

59 x1=input ( ’ e n t e r the f i r s t s equence v a l u e s x1 ( n )= ’ )
; // [ 1 2 3 4 ]

60 x2=input( ’ e n t e r the second s equence v a l u e s x2 ( n ) = ’
); // [ 1 −1 0 −1]

61 L=input ( ’ e n t e r the l e n g t h o f the s equence v a l u e s L=
’ ); // 4

62

63 // Computing DFT
64 X1 = fft(x1 ,-1); //−1 f o r d i r e c t

FFT
65 X2 = fft(x2 ,-1);

66 disp(X1, ’DFT o f x1 [ n ] i s X1( k )= ’ )
67 disp(X2, ’DFT o f x2 [ n ] i s X2( k )= ’ )
68

69 // M u l t i p l i c a t i o n o f 2 DFTs
70 X3 = X1.*X2;

71 disp(X3, ’DFT o f x3 [ n ] i s X3( k )= ’ )
72 x3 =(fft(X3 ,1)) //

C i r c u l a r Convo lu t i on R e s u l t ,1 f o r IFFT
73 disp(x3, ’ C i r c u l a r Convo lu t i on x3 [ n]= ’ )
74 // // Expected r e s u l t
75 //DFT o f x1 [ n ] i s X1( k )= 1 0 . − 2 . + 2 . i − 2 .

− 2 . − 2 . i
76
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77 //DFT o f x1 [ n ] i s X2( k )= − 1 . 1 . 3 . 1 .
78

79 // DFT o f x3 [ n ] i s X3( k )= − 1 0 . − 2 . + 2 . i −
6 . − 2 . − 2 . i

80

81 // C i r c u l a r Convo lu t i on x3 [ n]= −5. −2.
−3. 0 .

82

83 // // Per fo rming L i n e a r Convo lu t i on u s i n g C i r c u l a r
Convo lu t i on

84 clear;clc;

85 x=input ( ’ e n t e r the input s equence v a l u e s x ( n )= ’ );
// [ 1 2 3 4 ]

86 h=input( ’ e n t e r the impu l s e s equence v a l u e s h ( n ) = ’ )
; // [ 1 −1 0 −1]

87 N1 = length(x); // Length o f i nput s i g n a l
88 N2 = length(h); // Length o f impu l s e r e s p o n s e
89

90 N = N1+N2 -1 // Length o f
output r e s p o n s e

91 disp(N, ’ Length o f Output Response y ( n ) ’ )
92

93 // Padding z e r o s to Make Length o f ’ h ’ and ’ x ’ e q u a l
to l e n g t h o f output r e s p o n s e ’ y ’

94

95 h1 = [h,zeros(1,N-N2)];

96 x1 = [x,zeros(1,N-N1)];

97

98 H = fft(h1 ,-1);

99 X = fft(x1 ,-1);

100 // M u l t i p l i c a t i o n o f 2 DFTs
101 Y = X.*H

102 y =(fft(Y,1)) // L i n e a r Convo lu t i on R e s u l t
103

104 disp(X, ’DFT o f i /p X( k )= ’ )
105 disp(H, ’DFT o f impu l s e s equence H( k )= ’ )
106 disp(Y, ’DFT o f L i n e a r F i l t e r o/p Y( k )= ’ )
107 disp(y, ’ L i n e a r Convo lu t i on r e s u l t y [ n]= ’ )
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108

109 // Expected output
110 // Length o f Output Response y ( n ) 7 .
111

112 //DFT o f i /p X( k )= 1 0 . − 2 . 0 2 44 5 8 7 −
6 . 2 23 9 8 1 7 i , 0 . 3 4 6 0 1 0 7 + 2 . 4 7 9 1 21 3 i ,
0 . 1 78 4 4 7 9 − 2 . 4 2 19 8 4 7 i , 0 . 1 7 8 4 4 7 9 +
2 . 4 21 9 8 4 7 i , 0 . 3 4 6 0 1 0 7 − 2 . 4 79 1 2 1 3 i , −
2 . 0 24 4 5 8 7 + 6 . 2 2 3 9 8 1 7 i ,

113 //DFT o f impu l s e s equence H( k )= − 1 .
1 . 2 77 4 7 9 1 + 1 . 2 1 5 7 1 5 2 i , , 0 . 5 9 9 0 31 1 +
0 . 1 93 0 9 6 4 i , 2 . 1 2 3 4 8 9 8 + 1 . 4 0 8 8 11 7 i ,
2 . 1 23 4 8 9 8 − 1 . 4 0 88 1 1 7 i , 0 . 5 9 9 0 3 1 1 −
0 . 1 93 0 9 6 4 i , 1 . 2 7 7 4 7 9 1 − 1 . 2 15 7 1 5 2 i ,

114 //DFT o f L i n e a r F i l t e r o/p Y( k )= − 1 0 .
4 . 9 80 3 8 5 7 − 1 0 . 41 2 1 7 1 i , − 0 . 2 71 4 3 8 3 +
1 . 5 51 8 8 4 3 i , 3 . 7 9 1 05 2 6 − 4 . 8 91 6 6 0 2 i ,
3 . 7 91 0 5 2 6 + 4 . 8 9 1 6 6 0 2 i , − 0 . 2 71 4 3 8 3 −
1 . 5 51 8 8 4 3 i , 4 . 9 8 0 3 8 5 7 + 1 0 . 4 1 2 1 71 i ,

115 // L i n e a r Convo lu t i on r e s u l t y [ n]= 1 . 1 .
1 . 0 . −6. −3. −4.
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Experiment: 6

Spectral analysis using DFT

Scilab code Solution 6.1 To demonstrate spectral leakage

1

2 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // S p e c t r a l Leakage
4 // Check the r e s u l t f o r the f o l l o w i n g c a s e s
5 // c a s e ( 1 ) : fm=10; f s =125;m=1;m=number o f c y c l e s
6 // c a s e ( 2 ) : fm=10; f s =125;m=2;
7 // c a s e ( 3 ) : fm =200; f s =10000;m=2 .5 ;
8 // c a s e ( 4 ) : fm=75; f s =250;m=3;
9

10 clc;clear;close;

11 // fm=input ( ’ Enter the f r e q u e n c y o f the input s i g n a l
’ ) ; / / message f r e q u e n c y i n Hz

12 // f s=input ( ’ Enter the sampl ing f r equency ’ ) ; / /
sampl ing f r e q u e n c y i n Hz

13 //m=input ( ’ Enter the number o f c y c l e s o f the input
s i g n a l ’ ) ; / / Number o f c y c l e s

14 // Case2 : No s p e c t r a l l e a k a g e
15 fm=10;fs=125;m=2; // Oversampl ing and i n t e g e r number

o f c y c l e s
16 t=0.0001:1/ fs:m/fm;

17 x=3*cos(2* %pi*fm*t); // s i g n a l
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18 N=(m*fs/fm); // shou ld be non−
i n t e g e r to o b t a i n s p e c t r a l l e a k a g e

19 for k=1:N

20 X1(k)=0;

21 for n=1: length(x)

22 X1(k)=X1(k)+x(n).*exp((-%i).*2.* %pi.*(n-1) .*(k-1)

./N);

23 end

24 end

25 k=0:N-1

26 f=k*fs/N; // f r e q u e n c y a x i s i n Hz
27 figure (1),subplot (221),plot2d3(t,x),xlabel( ’ t ime ’ ),

ylabel( ’ x ( n ) ’ ),title( ’No l e a k a g e : m=2 , f =10 and
Fs=125 Hz ’ ),subplot (223) ,plot2d3(f,abs(X1)),
xlabel( ’ f r e q i n Hz ’ ),ylabel( ’Mag ’ );// Case 3 :
S p e c t r a l l e a k a g e

28 fm=10;fs=125;m=2.5; // Oversampl ing and i n t e g e r
number o f c y c l e s

29 t=0.0001:1/ fs:m/fm;

30 x=3*cos(2* %pi*fm*t); // s i g n a l
31 N=(m*fs/fm); // shou ld be non−

i n t e g e r to o b t a i n s p e c t r a l l e a k a g e
32 for k=1:N

33 X1(k)=0;

34 for n=1: length(x)

35 X1(k)=X1(k)+x(n).*exp((-%i).*2.* %pi.*(n-1) .*(k-1)

./N);

36 end

37 end

38 k=0:N-1

39 f=k*fs/N; // f r e q u e n c y a x i s i n Hz
40 figure (1),subplot (222),plot2d3(t,x),xlabel( ’ t ime ’ ),

ylabel( ’ x ( n ) ’ ),title( ’ S p e c t r a l l e a k a g e : m=2.5 , f
=10 and Fs=125 Hz ’ ),subplot (224) ,plot2d3(f,abs(X1
)),xlabel( ’ f r e q i n Hz ’ ),ylabel( ’Mag ’ )
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Figure 6.1: To demonstrate spectral leakage

Scilab code Solution 6.2 To demonstrate effects of zeropadding and zero
insertion on the spectrum

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 // E f f e c t o f z e r o padding and i n t e r p o l a t i o n
3 // E f f e c t o f Zero padding
4 clc;clear;close;

5 x= input ( ’ e n t e r the input s equence v a l u e s x ( n )= ’ );
// [ 1 2 3 4 ]

6 k= input ( ’ e n t e r the number o f z e r o s to be padded= ’
); // 1020 ( For 1024 p o i n t DFT) )

7 N=length(x);

8 x_pad=[x zeros(1,k)];

9 N1=length(x_pad);

10 f=0:N-1;

11 f1=0:N1 -1;

12 X=abs(fft(x));
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13 X_pad= abs(fft(x_pad));

14 figure (1);

15 subplot (221),plot2d3(x),title( ’ O r i g i n a l s equence ’ ),
subplot (223),plot2d3 (f,X), title( ’ Spectrum o f
O r i g i n a l s equence ’ );

16 subplot (222),plot2d3(x_pad),title( ’ Zero−padded
s equence ’ ),subplot (224) , plot2d3 (f1 ,X_pad),title

( ’ Spectrum o f Zero−padded s equence ’ )
17 // // E f f e c t o f i n s e r t i n g z e r o s i n between sample s (

I n t e r p o l a t i o n )
18 x= input ( ’ e n t e r the input s equence v a l u e s x ( n )= ’ );

// [ 1 2 3 4 ]
19 k= input ( ’ e n t e r the number o f z e r o s to be i n s e r t e d=

’ );// 2 ( Vary and o b s e r v e e f f e c t o f z e r o
i n t e r p o l a t i o n )

20 x_mod =[];

21 N=length(x);

22 //
23 for i= 1: N

24 x_mod=[x_mod , x(i), zeros(1,k)];

25 end

26 N1=length(x_mod);

27 f=0:N-1;

28 f1=0:N1 -1;

29 X=abs(fft(x));

30 X_mod= abs(fft(x_mod));

31 figure (2);subplot (221),plot2d3(x),title( ’ O r i g i n a l
s equence ’ ),subplot (223) ,plot2d3 (f,X), title( ’
Spectrum o f O r i g i n a l s equence ’ );

32 subplot (222),plot2d3(x_mod),title( ’ Zero− i n t e r p o l a t e d
s equence ’ ),subplot (224) , plot2d3 (f1 ,X_mod),

title( ’ Spectrum o f Zero− i n s e r t e d s equence ’ )
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Figure 6.2: To demonstrate effects of zeropadding and zero insertion on the
spectrum

Figure 6.3: To demonstrate effects of zeropadding and zero insertion on the
spectrum
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Experiment: 7

FIR filter design

Scilab code Solution 7.1 Design of FIR filter using Windowing method

1

2 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // Des ign o f FIR f i l t e r s u s i n g windowing
4 // Des ign a d i g i t a l FIR low pas s f i l t e r with

f o l l o w i n g s p e c i f i c a t i o n s .
5 // a ) Pass band cut−o f f f r e q u e n c y : wp=

r a d i a n s
6 //b ) Pass band r i p p l e : rp= d B
7 // c ) Stop band cut−o f f f r e q u e n c y : ws=

r a d i a n s
8 //d ) Stop band a t t e n u a t i o n : r s=

d B
9 // Choose an a p p r o p r i a t e window f u n c t i o n and

de t e rmine impu l s e r e s p o n s e and p r o v i d e a p l o t o f
f r e q u e n c y r e s p o n s e o f the d e s i g n e d f i l t e r .

10

11 // Des ign example :
12 // Des ign a d i g i t a l FIR low pas s f i l t e r with

f o l l o w i n g s p e c i f i c a t i o n s .
13 // a ) Pass band cut−o f f f r e q u e n c y : 0 . 3 rad
14 //b ) Pass band r i p p l e : 0 . 2 5 dB
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15 // c ) Stop band cut−o f f f r e q u e n c y : 0 . 4 5 rad
16 //d ) Stop band a t t e n u a t i o n : 50 dB
17 clc;

18 clear;

19 close;

20 wp=input( ’ e n t e r the pa s s band edge i n rad ’ );
21 ws=input( ’ e n t e r the s t op band edge i n rad ’ );
22 rs=input( ’ e n t e r the s t op band r i p p l e i n dB ’ );
23 freq_points =1024;

24 freq_divs =( freq_points /2) -1;

25 k=4; //Hamming window ( d e c i d e d based on s top band
a t t e n u a t i o n )

26 trw=ws -wp;

27 N=(k*2*%pi/trw);

28 N=ceil(N);

29 remainder=N-fix(N./2) .*2

30 if remainder ==0

31 N=N+1;

32 end

33

34 wc=wp;

35 aph=(N-1)/2;

36 for n=0:N-1

37 if n==aph

38 hdn_minusalph(n+1)=wc/%pi;

39

40 else

41 hdn_minusalph(n+1)= sin(wc.*(n-aph))./( %pi.*(n-

aph));

42

43 end

44 end

45 n=0:N-1;

46 wndw=window( ’hm ’ ,N);
47

48 hn=hdn_minusalph .*wndw ’;

49 figure (1);subplot (311);plot2d3(n,wndw);xlabel( ’ n ’ );
ylabel( ’wndw ’ );title( ’Hamming Window f u n c t i o n ’ );
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50 subplot (312); plot2d3(n,hdn_minusalph);xlabel( ’ n ’ );
ylabel( ’ hdn minusa lph ’ );title( ’ Impul se r e s p o n s e
o f IIR f i l t e r ’ );

51 subplot (313); plot2d3(n,hn);xlabel( ’ n ’ );ylabel( ’ hn ’ )
;title( ’ Impul se r e s p o n s e o f FIR f i l t e r ’ );

52 // omega =0: %pi/ f r e q d i v s : %pi ;
53 h=[hn’ zeros(1,freq_points -length(hn))];; // For a

1024 p o i n t DFT
54 H=fft(h);

55 H_mag =20* log10(abs(H));

56 H_ang=atan(imag(H),real(H));

57 H_phase=unwrap(H_ang);

58 w=(0: freq_divs)./( freq_points);

59 w1=w*%pi;

60 figure (2);subplot (211),plot2d(w1,H_mag (1:512));

61 xtitle( ’ Magnitude r e s p o n s e ’ , ’w ( rad ) ’ , ’ Magnitude (dB)
’ );

62 subplot (212),plot2d(w1,H_phase (1:512));

63 xtitle( ’ Phase Response ’ , ’w ( rad ) ’ , ’ Phase ( rad ) ’ );
64

65

66

67 // Problems :
68

69 // 1 . Des ign a d i g i t a l FIR low pas s f i l t e r with
f o l l o w i n g s p e c i f i c a t i o n s .

70 // a ) Pass band cut−o f f f r e q u e n c y : 0 . 4 rad
71 //b ) Pass band r i p p l e : 0 . 2 5 dB
72 // c ) Stop band cut−o f f f r e q u e n c y : 0 . 6 rad
73 //d ) Stop band a t t e n u a t i o n : 44 dB
74

75 // 2 . Des ign a d i g i t a l FIR low pas s f i l t e r with
f o l l o w i n g s p e c i f i c a t i o n s .

76 // a ) Pass band cut−o f f f r e q u e n c y : 0 . 2 5 rad
77 //b ) Pass band r i p p l e : 0 . 2 5 dB
78 // c ) Stop band cut−o f f f r e q u e n c y : 0 . 3 rad
79 //d ) Stop band a t t e n u a t i o n : 50 dB
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Figure 7.1: Design of FIR filter using Windowing method
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Figure 7.2: Design of FIR filter using Windowing method
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Experiment: 8

Design of Hilbert transformer
using FIR filter

Scilab code Solution 8.1 Design of a digital Hilbert Transformer using
FIR filter

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 // Des ign a d i f f e r e n t i a t o r u s i n g a Hamming window o f

l e n g t h N=21. P lo t the t ime and f r e q u e n c y domain
r e s p o n s e s .

3 // Des ign a l eng th −25 d i g i t a l H i l b e r t t r a n s f o r m e r
u s i n g a Hann window .

4

5 // Des ign o f H i l b e r t t r a n s f o r m e r
6 //The i d e a l f r e q u e n c y r e s p o n s e o f a l i n e a r phase

H i l b e r t t r a n s f o r m e r i s g i v e n by
7 //Hd( e jw ) = − j e(− j w ) , 0 < w < p i
8 // j e(− j w ) , −p i < w < 0
9

10 //The i d e a l impu l s e r e s p o n s e i s g i v e n by
11

12 //hd ( n− )= 2/ p i ( s i n 2 p i ( n ) /2) / ( n
) , n

13 // 0 , n=

35



14

15

16 // S c i l a b Program
17 // Input s : Window l e n g t h and type o f window
18 clc;clear;close;

19

20 N = 41; // input (” e n t e r the window l e n g t h ”) ; //55
21 freq_points =1024;

22 windowfn =window( ’hm ’ ,N);// Hamming window ( ) Window
type can be changed he r e )

23 m = 0:N-1;

24 aph = (N-1)/2;

25 for n=0:N-1

26 if n==aph

27 hd(n+1)=0;

28

29 else

30 hd(n+1) =(2/ %pi)*(( sin((%pi/2)*(n-aph)).^2) ./(n-

aph));

31

32 end

33 end

34 n=0:N-1;

35 hn = hd.*windowfn ’;

36

37 omega=-%pi:2*%pi/( freq_points -1):%pi;

38

39 z=%z;

40 den1=real(z^(N-1));

41 num =0;

42 for n=0:N-1

43 num=num+(hn(n+1).*z^(N-n-1));

44 end

45 num1=real(num);

46 Hz=num1./den1;

47 w=exp(%i*omega);

48 rep=freq(Hz(”num”),Hz(” den ”),w);
49 magH=abs(rep);
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Figure 8.1: Design of a digital Hilbert Transformer using FIR filter

50 figure;subplot (211) ,plot2d3(m,hn),xtitle( ’ Impul se
r e s p o n s e ’ , ’ n ’ ’ h [ n ] ’ )

51 , subplot (212),plot2d(omega ,magH);

52 xtitle( ’ Magnitude r e s p o n s e ’ , ’w ( rad ) ’ , ’ Magnitude ’ );
53 // Expected r e s u l t
54 // Magnitude r e s p o n s e graph
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Experiment: 9

Design of digital differentiator
using FIR filter

Scilab code Solution 9.1 Design of Digital Differentiator using a FIR fil-
ter

1

2 11 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // Des ign a d i f f e r e n t i a t o r u s i n g a Hamming window o f

l e n g t h N=21. P lo t the t ime and f r e q u e n c y domain
r e s p o n s e

4 // Input s : Window l e n g t h and Type o f window
5 //The f r e q u e n c y r e s p o n s e o f a l i n e a r −phase i d e a l

d i f f e r e n t i a t o r i s g i v e n by
6 //Hd( e jw ) = j , 0< <
7 // −jw , − < < 0
8 //The i d e a l impu l s e r e s p o n s e o f a d i g i t a l

d i f f e r e n t i a t o r s h i f t e d by with l i n e a r phase i s
g i v e n by

9 //hd ( n ) = co s ( n ) / ( n − ) , n

10 // 0 , n =
11

12 // S c i l a b Program :
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13 clc;clear;close;

14 N = 41; // input (” e n t e r the window l e n g t h ”) ; //55
15 freq_points =1024;

16 windowfn =window( ’hm ’ ,N);//Hamming wuindow ( Try with
d i f f e r e n t windows )

17 m = 0:N-1;

18 aph = (N-1)/2;

19 for n=0:N-1

20 if n==aph

21 hd(n+1)=0;

22

23 else

24 hd(n+1)= cos(%pi*(n-aph))./(n-aph);

25

26 end

27 end

28 n=0:N-1;

29 hn = hd.*windowfn ’;

30

31 omega=-%pi:2*%pi/( freq_points -1):%pi;

32

33 z=%z;

34 den1=real(z^(N-1));

35 num =0;

36 for n=0:N-1

37 num=num+(hn(n+1).*z^(N-n-1));

38 end

39 num1=real(num);

40 Hz=num1./den1;

41 w=exp(%i*omega);

42 rep=freq(Hz(”num”),Hz(” den ”),w);
43 magH=abs(rep);

44 figure;subplot (211) ,plot2d3(m,hn),xtitle( ’ Impul se
r e s p o n s e ’ , ’ n ’ , ’ h [ n ] ’ ),subplot (212) ,plot2d(omega ,
magH);

45 xtitle( ’ Magnitude r e s p o n s e ’ , ’w ( rad ) ’ , ’ Magnitude ’ );
46 // Expected r e s u l t
47 // Magnitude r e s p o n s e graph
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Figure 9.1: Design of Digital Differentiator using a FIR filter
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Experiment: 10

Design of IIR filter

Scilab code Solution 10.1 Design of digital Butterworth lowpass filter

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 // Program To Des ign the D i g t i a l Butte rworth IIR

F i l t e r
3 // Des ign a d i g i t a l I IR low pas s f i l t e r with

f o l l o w i n g s p e c i f i c a t i o n s .
4 // a ) Pass band cut−o f f f r e q u e n c y : 1 0 0 0 Hz
5 //b ) Pass band r i p p l e :−1 dB
6 // c ) Stop band cut−o f f f r e q u e n c y : 3 0 0 0 Hz
7 //d ) Stop band a t t e n u a t i o n : −15 dB
8 // Sampl ing f r e q u e n c y : 15000 Hz
9

10 clear all;clc;close;

11 f1 =1000; // input ( ’ Enter the pa s s band edge ( Hz )= ’ ) ;
12 f2 =3000; // input ( ’ Enter the s t op band edge ( Hz )= ’ ) ;
13 k1=-1; // input ( ’ Enter the pa s s band a t t e n u a t i o n (dB)=

’ ) ;
14 k2=-15; // input ( ’ Enter the s t op band a t t e n u a t i o n (dB)=

’ ) ;
15 fs =10000; // input ( ’ Enter the sampl ing r a t e ( Hz )= ’ ) ;
16

17 // D i g i t a l f i l t e r s p e c i f i c a t i o n s ( rad )
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18 w1=2*%pi*f1*1/fs;

19 w2=2*%pi*f2*1/fs;

20

21 // Pre warping
22 o1=2*fs*tan(w1/2)

23 o2=2*fs*tan(w2/2)

24

25 // Des ign o f ana l og f i l t e r
26 n=log10 (((10.^( -k1/10)) -1)/((10.^( -k2/10)) -1))./(2*

log10(o1/o2));

27 n=round(n);

28 wn= o2./((10.^( -k2/10) -1).^(1/(2*n)));

29

30 // [ h , p o l e s , z e r o s , ga in ]= a n a l p f ( n , ’ butt ’ , [ 0 0 ] , wn) hb .
dt = ’ c ’ ;

31 // [ f r , hr ]= r e p f r e q ( hb , fmin , fmax )
32

33 h=buttmag(n,wn ,1:2* %pi*fs);

34 mag =20* log10(h)’;

35

36

37 // Conver t ing ana l og to d i g i t a l f i l t e r
38 hz=iir(n, ’ l p ’ , ’ but t ’ ,0.25,[])
39 // g∗ po ly ( z , ’ z ’ ) / po ly ( p , ’ z ’ )
40

41 [hzm ,fr]=frmag(hz ,256);

42 magz =20* log10(hzm)’;

43

44 subplot (2,1,1),plot2d ((1:2* %pi*fs)’,mag),xtitle( ’
Analog IIR f i l t e r : l owpas s ’ , ’ Analog f r e q u e n c y i n
rad s / s e c ’ , ’dB ’ , ’ ’ );subplot (2,1,2),plot2d(fr ,
magz);xtitle( ’ D i g i t a l I IR f i l t e r : l owpas s 0 < f r
< 0 . 5 ’ , ’ f r e q u e n c y ’ , ’dB ’ , ’ ’ );

45

46 // note : Use zoom/ a x i s commands to v e r i f y the d e s i g n .
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Figure 10.1: Design of digital Butterworth lowpass filter

Scilab code Solution 10.2 Design of Digital Chebyshev lowpass filter

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 // Program To Des ign the D i g t i a l Chebyshev IIR F i l t e r
3 // // Des ign example :
4 // Des ign a d i g i t a l I IR low pas s f i l t e r with

f o l l o w i n g s p e c i f i c a t i o n s .
5 // a ) Pass band cut−o f f f r e q u e n c y : 1 0 0 0 Hz
6 //b ) Pass band r i p p l e :−1 dB
7 // c ) Stop band cut−o f f f r e q u e n c y : 3 0 0 0 rad
8 //d ) Stop band a t t e n u a t i o n : −15 dB
9 // Sampl ing f r e q u e n c y : 15000 Hz
10

11 clear all;clc;close;

12 f1 =1000; // input ( ’ Enter the pa s s band edge ( Hz )= ’ ) ;
13 f2 =3000; // input ( ’ Enter the s t op band edge ( Hz )= ’ ) ;
14 rp=-1; // input ( ’ Enter the pa s s band r i p p l e (dB)= ’ ) ;
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15 rs=-15; // input ( ’ Enter the s t op band a t t e n u a t i o n (dB)=
’ ) ;

16 fs =10000; // input ( ’ Enter the sampl ing r a t e ( Hz )= ’ ) ;
17 // D i g i t a l f i l t e r s p e c i f i c a t i o n s ( rad )
18 w1=2*%pi*f1*1/fs

19 w2=2*%pi*f2*1/fs

20 // Pre warping
21 o1=2*fs*tan(w1/2)

22 o2=2*fs*tan(w2/2)

23 or=o2/o1;// Stop−band edge o f no rma l i z ed l owpas s
f i l t e r

24 A2 =10.^( -rs/10);

25 A=sqrt(A2);

26 epsilon2 = (10.^( -rp/10) -1);

27 epsilon=sqrt(epsilon2)

28 g=((A2 -1) .^0.5./ epsilon)

29

30 N = (acosh(g))/(acosh(or))

31 N = ceil(N)

32 oc=o1;

33 // [ po l s , gn ] = zpch1 (N, e p s i l o n , o1 )
34 //Hs = po ly ( gn , ’ s ’ , ’ c o e f f ’ ) / r e a l ( po ly ( po l s , ’ s ’ ) )
35 h=cheb1mag(N,oc ,epsilon ,1:2* %pi*fs);

36 mag =20* log10(h)’;

37 // p l o t 2 d ( ( 1 : 1 0 0 0 ) ’ , mag , [ 2 ] , ” 0 1 1 ” , ” ” , [ ymax , ymin , fmax
, fmin ] )

38 // ga in =20∗ l o g 1 0 ( abs ( h s ) ) ; %Veri fy the s p e c i f i c a t i o n
[ k1 , k2 ] a t prewarped f r e q u e n c i e s

39 // s u b p l o t ( 2 1 1 ) ;
40 // p l o t ( omega , ga in ) ;
41 // x l a b e l ( f r e q u e n c y i n rad / s e c ) ;
42 // Conver t ing ana l og to d i g i t a l f i l t e r
43 fc=w1/(2* %pi);

44 delta1 =(1 -(1./A2));

45 //1− r i p p l e i n passband
46 hz=iir(N, ’ l p ’ , ’ cheb1 ’ ,[fc],[delta1 0]);

47 // f o r cheb1 f i l t e r s 1−d e l t a ( 1 )<r i p p l e <1 i n passband
48 // g∗ po ly ( z , ’ z ’ ) / po ly ( p , ’ z ’ )
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Figure 10.2: Design of Digital Chebyshev lowpass filter

49 [hzm ,fr]=frmag(hz ,256);

50 magz =20* log10(hzm) ’;

51 figure (1);subplot (2,1,1),plot2d ((1:2* %pi*fs)’,mag),

xtitle( ’ Analog IIR f i l t e r : l owpas s ’ , ’ Analog
f r e q u e n c y i n rad s / s e c ’ , ’dB ’ , ’ ’ );subplot (2,1,2),
plot2d(fr,magz);xtitle( ’ D i g i t a l I IR f i l t e r :
l owpas s 0 < f r < 0 . 5 ’ , ’ f r e q u e n c y ’ , ’dB ’ , ’ ’ );
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Experiment: 11

Application of IIR filter

Scilab code Solution 11.1 To design a digital IIR Butterworth filter to
suppress noise

1 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
2 // This program w i l l s u p p r e s s n o i s e at f =4000 Hz

u s i n g Butte rworth p r o t o t y p e
3 // pas s band edge=f 1 =1500Hz
4 // s top band edge=f 2 =2000 Hz
5 // sampl ing r a t e =Fs =10000 Hz = 1/Ts
6 // passband a t t e n u a t i o n = −1db
7 // s top a t t e n u a t i o n = −3 db
8

9 clear all;clc;close;

10 f1=input( ’ Enter the pa s s band edge ( Hz )= ’ );
11 f2=input( ’ Enter the s t op band edge ( Hz )= ’ );
12 k1=input( ’ Enter the pa s s band a t t e n u a t i o n (dB)= ’ );
13 k2=input( ’ Enter the s t op band a t t e n u a t i o n (dB)= ’ );
14 fs=input( ’ Enter the sampl ing r a t e ( Hz )= ’ );
15

16 signal_fo =1000;

17 noise_fo =4000;

18

19 // D i g i t a l f i l t e r s p e c i f i c a t i o n s ( rad )
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20 w1=2*%pi*f1*1/fs;

21 w2=2*%pi*f2*1/fs;

22

23 // Pre warping
24 o1=2*fs*tan(w1/2)

25 o2=2*fs*tan(w2/2)

26

27 // Des ign o f ana l og f i l t e r
28 n=log10 (((10.^( -k1/10)) -1)/((10.^( -k2/10)) -1))./(2*

log10(o1/o2));

29 n=round(n);

30 wn= o2./((10.^( -k2/10) -1).^(1/(2*n)));

31

32 // [ h , p o l e s , z e r o s , ga in ]= a n a l p f ( n , ’ butt ’ , [ 0 0 ] , wn) hb .
dt = ’ c ’ ;

33 // [ f r , hr ]= r e p f r e q ( hb , fmin , fmax )
34

35 h=buttmag(n,wn ,1:2* %pi*fs);

36 mag =20* log10(h)’;

37 // p l o t 2 d ( ( 1 : 2 ∗ %pi∗ f s ) ’ , mag)
38 // x t i t l e ( ’ Analog IIR f i l t e r : lowpass ’ , ’ Analog

f r e q u e n c y i n rad s / sec ’ , ’dB ’ , ’ ’ ) ;
39

40 // Conver t ing ana l og to d i g i t a l f i l t e r
41 hz=iir(n, ’ l p ’ , ’ but t ’ ,0.25,[])
42 // g∗ po ly ( z , ’ z ’ ) / po ly ( p , ’ z ’ )
43

44 [hzm ,fr]=frmag(hz ,256);

45 magz =20* log10(hzm)’;

46 fr1=fr*fs;

47 // f i g u r e ; p l o t 2 d ( f r 1 ’ , magz ’ ) ; x t i t l e ( ’ D i g i t a l I IR
f i l t e r : l owpas s 0 < f r < 0 . 5 ’ , ’ f r equency ’ , ’dB ’ , ’

’ ) ;
48

49 // //// note : Use zoom/ a x i s commands to v e r i f y the
d e s i g n .

50 // These c o e f f i c i e n t s a r e to be read from v a r i a b l e hz
( l i n e 41 , output o f i i r f u n c t i o n )
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51 num =[0.2928 0.5858 0.2928];

52 den =[1 0 0.1716]; // In n e g a t i v e powers o f z
53

54 // S i g n a l g e n e r a t i o n ( s i n e wave o f f r e q u e n c y 1000 Hz )
o f l e n g t h 1 second

55 t=0:1/ fs:10/ signal_fo;// 10 c y c l e s o f i nput
56 original_signal=sin(2* %pi*signal_fo*t);

57

58 // No i s e g e n e r a t i o n ( s i n e wave o f f r e q u e n c y 4000 Hz )
o f l e n g t h 1 second

59 t=0:1/ fs:10/ signal_fo;

60 noise=sin (2*%pi*noise_fo*t);

61

62 noisy_signal=original_signal+noise;

63

64 filter_output=filter(num ,den ,noisy_signal);

65

66 // P lo t o r i g i n a l , n o i s y and f i l t e r e d output s
67

68 figure;subplot (3,1,1), plot2d(t,original_signal),

xtitle( ’ O r i g i n a l s i g n a l ’ , ’ t ’ , ’ x ( t ) ’ ),
69 subplot (3,1,2), plot2d(t,noisy_signal),xtitle( ’

N o i s y s i g n a l ’ , ’ t ’ , ’ n ( t ) ’ ),
70 subplot (3,1,3), plot2d(t,filter_output),xtitle( ’

F i l t e r e d s i g n a l ’ , ’ t ’ , ’ y ( t ) ’ );
71 l1=length(original_signal);

72 l2=length(noisy_signal);

73 N=512;

74 x=[ original_signal zeros(1,N-l1)]; //To make i t o f
l e n g t h 512

75 n=[ noisy_signal zeros(1,N-l1)];

76 y=[ filter_output zeros(1,N-l1)];

77 X=fft(x);

78 N=fft(n);

79 Y=fft(y);

80 f=(0:511)*fs;

81 figure;

82 subplot (3,1,1), plot2d(f,abs(X)),xtitle( ’
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Figure 11.1: To design a digital IIR Butterworth filter to suppress noise

O r i g i n a l s i g n a l ’ , ’F ’ , ’X( f ) ’ ),
83 subplot (3,1,2), plot2d(f,abs(N)),xtitle( ’

N o i s y s i g n a l ’ , ’F ’ , ’N( f ) ’ ),
84 subplot (3,1,3), plot2d(f,abs(Y)),xtitle( ’

F i l t e r e d s i g n a l ’ , ’F ’ , ’Y( f ) ’ );
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Figure 11.2: To design a digital IIR Butterworth filter to suppress noise
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Experiment: 12

Design of Notch filter

Scilab code Solution 12.1 Suppression of noise at a given frequency using
Notch filter

1

2 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // Program To Des ign a s i m p l e notch f i l t e r and v e r i f y
4 // Des ign a s i m p l e notch f i l t e r to s t op a

d i s t u r b a n c e with f r e q u e n c y F 0 =3.5 kHz and a
sampl ing f r e q u e n c y F s=8 kHz .

5 // Also , v e r i f y the notch f i l t e r o p e r a t i o n by adding
a s inewave o f F 0 Hz to a speech s i g n a l , f i l t e r
and v e r i f y .

6

7 // S c i l a b Program :
8 clc;clear;close;

9 f=3500; // input (” Enter the f r e q u e n c y i n Hz ”) ;
//3500

10 fs =8000; // input (” Enter the sampl ing r a t e ”) ;
//8000

11 r=0.98; // input (” Enter the r a d i u s o f the p o l e i n the
z−p lane ”) ; / / 0 . 9 8

12 w=2*%pi*f/fs;

13 z1=exp(%i*w);
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14 z2=exp(-%i*w);

15 p1=r*exp(%i*w);

16 p2=r*exp(-%i*w);

17 z=%z;

18 num1=(real((z-z1)*(z-z2)))

19 den1=(real (((z-p1)*(z-p2))))

20 Hz=num1./den1

21 // f i g u r e ( 1 ) ; p l z r ( Hz ) ; z g r i d ( )
22 [h1 fr]=frmag(Hz ,512)

23 figure (1);plot2d(fr*fs,h1);xtitle( ’ Magnitude
r e s p o n s e ’ , ’ f r e q u e n c y i n Hz ’ , ’Mag ’ );

24

25 // No i s e g e n e r a t i o n
26

27 original_signal=wavread( ’ home/hyrkswamy/kswamy/
Coursework /SAP/wav/mask . wav ’ );

28 t=0:1/ fs:( length(original_signal) -1)/fs;

29 noise=sin (2*%pi*f*t);

30 noisy_signal=original_signal+noise;

31

32 filter_output=filter(num1 ,den1 ,noisy_signal);

33

34 // Play back the o r i g i n a l , n o i s y and f i l t e r e d output s
35 playsnd(original_signal ,fs);

36 pause;

37 playsnd(noisy_signal ,fs);

38 pause;

39 playsnd(filter_output ,fs);
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Figure 12.1: Suppression of noise at a given frequency using Notch filter

53



Experiment: 13

Design of Resonator

Scilab code Solution 13.1 Design of a Notch filter to filter noise at a given
frequency

1

2 // s c i l a b 5 . 5 . 2 , OS : Ubuntu 1 4 . 0 4
3 // Des ign a d i g i t a l r e s o n a t o r tha t r e s o n a t e s at 1000

Hz . Assume Fs=8000 Hz .
4 // C a l c u l a t e the p o l e l o c a t i o n
5 //w=2∗ p i ∗ f / f s ;
6 // Complex c o n j u g a t e p a i r o f p o l e s at w=p i /4 and −p i

/4
7 // Assume r a d i u s =0.98 ( near to u n i t c i r c l e but i n s i d e

the u n i t c i r c l e )
8

9 // S c i l a b Program :
10 clc;

11 clear;

12 close;

13 f=1000; // input (” Enter the f r e q u e n c y i n Hz ”) ;
//1000

14 fs =8000; // input (” Enter the sampl ing r a t e ”) ;
//8000

15 r=0.98; // input (” Enter the r a d i u s o f the p o l e i n the
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Figure 13.1: Design of a Notch filter to filter noise at a given frequency

z−p lane ”) ; / / 0 . 9 8
16 w=2*%pi*f/fs;

17 pole1=r*exp(%i*w);

18 pole2=r*exp(-%i*w);

19

20 z=%z;

21

22 num1=real(z^(2));

23 den1=real(z^(2) -1.3859293*z+0.9604);

24 Hz=num1./den1;

25 // f i g u r e ;
26 // p l z r ( Hz ) ;
27 [h1 fr]=frmag(Hz ,1024);

28 figure;

29 plot2d(fr*fs,h1);

30 xtitle( ’ Magnitude r e s p o n s e ’ , ’ f r e q u e n c y i n Hz ’ , ’Mag ’ )
;
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