
Scilab Manual for
Advanced Digital Communication

by Prof S K Satyanarayana
Electronics Engineering

Sreenidhi Institute Of Science And
Technology1

Solutions provided by
Prof S K Satyanarayana
Electronics Engineering

Sreenidhi Institute Of Science And Technology

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Reed Solomon Codes 5

2 Duobinary Encoder & Decoder 7

3 Differential Phase Shift Keying 10

4 PseudoNoise Sequence Generator 13

5 Unipolar NRZ 17

6 Uniform Quantization PCM 19

7 Convolutional Coding using Transform Domain Approach 21

8 Duobinary Signaling - Amplitude & Phase Response 23

9 Power Spectrum of Discrete PAM Signal 25

10 Power Spectrum of MSK & QPSK 27

2

List of Experiments

Solution 1.1 1 . 5
Solution 2.2 2 . 7
Solution 3.3 3 . 10
Solution 4.4 4 . 13
Solution 5.5 5 . 17
Solution 6.6 6 . 19
Solution 7.7 7 . 21
Solution 8.8 8 . 23
Solution 9.9 9 . 25
Solution 10.10 10 . 27
AP 1 sinc new . 29
AP 2 MSK QPSK new 30
AP 3 PS PAM new . 31
AP 4 Duobinary Signalling new 32
AP 5 Conv Code new 33
AP 6 uniformpcm . 33
AP 7 xor . 34
AP 8 XOR new . 34
AP 9 ReedSolomonCodes 35

3

List of Figures

5.1 5 . 18

8.1 8 . 24

9.1 9 . 26

10.1 10 . 28

4

Experiment: 1

Reed Solomon Codes

check Appendix AP 9 for dependency:

ReedSolomon_Codes.sci

Scilab code Solution 1.1 1

1 //Reed−Solomon Codes
2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5

6 //Note : P l e a s e run the ReedSolomon Codes . s c i
dependency f i l e b e f o r e e x e c u t i n g t h i s program

7 n=16 // code word
8 k=4 // i n f o rma t i o n b i t
9 s=8 //no o f b i t symbols
10 ReedSolomon_Codes(n,k,s)

11

12 //n=16
13 //k=4
14 // s=8
15 // ReedSolomon Codes (n , k , s)
16 // p a r i t y b i t s l e n g t h i n s−b i t byte n−k=

5

17 //
18 // 1 2 .
19 //
20 // Code r a t e : r = k/n =
21 //
22 // 0 . 2 5
23 //
24 // I t can d e t e c t any e r r o r upto =
25 //
26 // 1 2 .
27 //
28 // I t can c o r r e c t any e r r o r upto =
29 //
30 // 6 .

6

Experiment: 2

Duobinary Encoder & Decoder

check Appendix AP 8 for dependency:

xor_new.sci

Scilab code Solution 2.2 2

1 // Duobinary Encoding
2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 close;

7 //Note : P l e a s e run the xor . s c i dependency f i l e
b e f o r e e x e c u t i n g t h i s program

8 //Note : Don ’ t run the c l e a r command a f t e r runn ing
the dependency (xor . s c i) as i t c o n t a i n s the
r e q u i r e d f u n t i o n which w i l l be c l e a r e d by the
c l e a r command

9 b=[0 ,1 ,0 ,1 ,1 ,1 ,0]; // input b ina ry s equence :
p r e c od e r input

10 a(1)=xor_new(1,b(1));

11 if(a(1) ==1)

12 a_volts (1)=1;

7

13 end

14 for k=2: length(b)

15 a(k)=xor_new(a(k-1),b(k));

16 if(a(k)==1)

17 a_volts(k)=1;

18 else

19 a_volts(k)=-1;

20 end

21 end

22 a=a’;

23 a_volts=a_volts ’;

24 disp(a, ’ Pre code r output i n b ina ry form : ’)
25 disp(a_volts , ’ Pre code r output i n v o l t s : ’)
26

27 // Duobinary code r output i n v o l t s
28 c(1)=1+ a_volts (1);

29 for k =2: length(a)

30 c(k)=a_volts(k -1)+a_volts(k);

31 end

32 c=c’;

33 disp(c, ’ Duobinary code r output i n v o l t s : ’)
34

35 // Duobinary decode r output by app l y i ng d e c i s i o n r u l e
36 for k =1: length(c)

37 if(abs(c(k)) >1)

38 b_r(k)=0;

39 else

40 b_r (k) = 1;

41 end

42 end

43 b_r=b_r ’;

44 disp(b_r , ’ Recovered o r i g i n a l s equence at d e t e c t o r
output : ’)

45

46 //Output
47 // Pre code r output i n b ina ry form :
48 //
49 // 1 . 0 . 0 . 1 . 0 . 1 . 1 .

8

50 //
51 // Pre code r output i n v o l t s :
52 //
53 // 1 . −1. −1. 1 . −1. 1 . 1 .
54 //
55 // Duobinary code r output i n v o l t s :
56 //
57 // 2 . 0 . −2. 0 . 0 . 0 . 2 .
58 //
59 // Recovered o r i g i n a l s equence at d e t e c t o r output :
60 //
61 // 0 . 1 . 0 . 1 . 1 . 1 . 0 .

9

Experiment: 3

Differential Phase Shift Keying

check Appendix AP 8 for dependency:

xor_new.sci

Scilab code Solution 3.3 3

1 // Genera t i on o f D i f f e r e n t i a l Phase S h i f t Keying
S i g n a l

2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 close;

7 //Note : P l e a s e run the xor new . s c i dependency f i l e
b e f o r e e x e c u t i n g t h i s program

8 //Note : Don ’ t run the c l e a r command a f t e r runn ing
the dependency (xor new . s c i) as i t c o n t a i n s the
r e q u i r e d f u n t i o n which w i l l be c l e a r e d by the
c l e a r command

9 bk = [1,0,1,1,0,1,1,1]; // input d i g i t a l s equence
10 for i = 1: length(bk)

11 if(bk(i)==1)

12 bk_not(i) =~1;

10

13 else

14 bk_not(i)= 1;

15 end

16 end

17 dk_1 (1) = 1&bk(1); // i n i t i a l v a l u e o f d i f f e r e n t i a l
encoded s equence

18 dk_1_not (1) =0& bk_not (1);

19 dk(1) = xor_new(dk_1 (1),dk_1_not (1))// f i r s t b i t o f
dpsk encode r

20 for i=2: length(bk)

21 dk_1(i) = dk(i-1);

22 dk_1_not(i) = ~dk(i-1);

23 dk(i) = xor_new ((dk_1(i)&bk(i)) ,(dk_1_not(i)&

bk_not(i)));

24 end

25 for i =1: length(dk)

26 if(dk(i)==1)

27 dk_radians(i)=0;

28 elseif(dk(i)==0)

29 dk_radians(i)=%pi;

30 end

31 end

32 disp(bk, ’ (bk) ’)
33 bk_not = bk_not ’;

34 disp(bk_not , ’ (bk not) ’)
35 dk = dk ’;

36 disp(dk, ’ D i f f e r e n t i a l l y encoded s equence (dk) ’)
37 dk_radians = dk_radians ’;

38 disp(dk_radians , ’ Transmit ted phase i n r a d i a n s ’)
39

40 //Output
41 // (bk)
42 //
43 // 1 . 0 . 1 . 1 . 0 . 1 . 1 . 1 .
44 //
45 // (bk not)
46 //
47 // 0 . 1 . 0 . 0 . 1 . 0 . 0 . 0 .

11

48 //
49 // D i f f e r e n t i a l l y encoded s equence (dk)
50 //
51 // 1 . 0 . 0 . 0 . 1 . 1 . 1 . 1 .
52 //
53 // Transmit ted phase i n r a d i a n s
54 //
55 //
56 // column 1 to 7
57 //
58 // 0 . 3 . 1415927 3 . 1415927 3 . 1415927 0 .

0 . 0 .
59 //
60 // column 8
61 //
62 // 0 .
63 //

12

Experiment: 4

PseudoNoise Sequence
Generator

check Appendix AP 7 for dependency:

xor.sci

Scilab code Solution 4.4 4

1

2 // Generate Maximum Length Pseudo No i s e Sequence
3 //Windows 7
4 // S c i l a b 6 . 0 . 0
5

6 //Note : P l e a s e run the xor . s c i dependency f i l e
b e f o r e e x e c u t i n g t h i s program

7 // Ass ign I n i t i a l v a l u e f o r PN g en e r a t o r
8 x0= 1;

9 x1= 0;

10 x2 =0;

11 x3 =0;

12 x4= 0;

13 x5= 0;

14 x6= 0;

13

15 x7= 0;

16 x8= 0;

17 N = input(’ Enter the p e r i o d o f the s i g n a l ’)
18 for i =1:N

19 x1 = x0;

20 x8 =x7

21 x7 =x6

22 x0 =xor(x7 ,x1)

23 x6 =x5

24 x5 =x4

25 x0 =xor(x1 ,x5)

26 x4 =x3

27 x3 =x2;

28 x2 =x1;

29 x0 =xor(x1 ,x3);

30 disp(i, ’ The PN sequence at s t e p ’)
31 x = [x1 x2 x3 x4 x5 x6 x7 x8];

32 disp(x, ’ x= ’)
33 end

34 m = [7,8,9,10,11,12,13,17,19];

35 Nl = 2^m-1;

36 disp(’ Table Range o f PN Sequence l e n g t h s ’)
37 disp(’ Length o f s h i f t r e g i s t e r (m) ’)
38 disp(m)

39 disp(’PN sequence Length (N) ’)
40 disp(Nl)

41

42 // Execut i on
43 // Enter the p e r i o d o f the s i g n a l
44 // 5
45 //
46 //
47 // The PN sequence at s t e p
48 //
49 // 1 .
50 //
51 // x=
52 //

14

53 // 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 .
54 //
55 // The PN sequence at s t e p
56 //
57 // 2 .
58 //
59 // x=
60 //
61 // 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 .
62 //
63 // The PN sequence at s t e p
64 //
65 // 3 .
66 //
67 // x=
68 //
69 // 0 . 0 . 1 . 1 . 0 . 0 . 0 . 0 .
70 //
71 // The PN sequence at s t e p
72 //
73 // 4 .
74 //
75 // x=
76 //
77 // 1 . 1 . 0 . 1 . 1 . 0 . 0 . 0 .
78 // The PN sequence at s t e p
79 //
80 // 5 .
81 //
82 // x=
83 //
84 // 1 . 1 . 1 . 0 . 1 . 1 . 0 . 0 .
85 //
86 // Table Range o f PN Sequence l e n g t h s
87 //
88 // Length o f s h i f t r e g i s t e r (m)
89 //

15

90 // 7 . 8 . 9 . 1 0 . 1 1 . 1 2 . 1 3 . 1 7 .
1 9 .

91 //
92 // PN sequence Length (N)
93 //
94 //
95 // column 1 to 7
96 //
97 // 127 . 2 5 5 . 5 1 1 . 1 0 23 . 2 047 . 4 0 95 .

8 1 91 .
98 //
99 // column 8 to 9

100 //
101 // 131071 . 5 24287 .

16

Experiment: 5

Unipolar NRZ

Scilab code Solution 5.5 5

1 // Un ipo l a r NRZ
2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 clear;

7 close;

8

9 x = [0 1 0 0 0 1 0 0 1 1];

10 binary_zero = [0 0 0 0 0 0 0 0 0 0];

11 binary_one = [1 1 1 1 1 1 1 1 1 1];

12 L = length(x);

13 L1 = length(binary_zero);

14 total_duration = L*L;

15

16 // p l o t t i n g
17 a =gca();

18 a.data_bounds =[0 -2;L*L1 2];

19 for i =1:L

17

Figure 5.1: 5

20 if(x(i)==0)

21 plot([i*L-L+1:i*L],binary_zero);

22 poly1= a.children (1).children (1);

23 poly1.thickness =3;

24 else

25 plot([i*L-L+1:i*L],binary_one);

26 poly1= a.children (1).children (1);

27 poly1.thickness =3;

28 end

29 end

30 xgrid (1)

31 title(’ Un ipo l a r NRZ ’)
32 xlabel(’ t ime ’)
33 ylabel(’ ampl i tude ’)

18

Experiment: 6

Uniform Quantization PCM

check Appendix AP 6 for dependency:

uniform_pcm.sci

Scilab code Solution 6.6 6

1

2 // Uniform Quant i z a t i on − PCM
3 //Windows 7
4 // S c i l a b 6 . 0 . 0
5

6 //Note : P l e a s e run the uni form pcm . s c i dependency
f i l e b e f o r e e x e c u t i n g t h i s program

7 x=[1,0,1,0,1,0,1,0] // input s equence
8 L=3 //no o f q u a n t i z a t i o n l e v e l s
9 [SQNR ,xq,en_code] = uniform_pcm(x,L)

10 disp(SQNR , ’SQNR: ’)
11 disp(xq, ’ xq : ’)
12 disp(en_code , ’ e n code : ’)
13

14 // Execut i on
15 // [SQNR, xq , en code] = uni form pcm (x , L)
16 // en code =

19

17 //
18 // 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 .
19 //
20 // xq =
21 //
22 //
23 // column 1 to 4
24 //
25 // 0 . 6666667 0 . 0 . 6 666667 0 .
26 //
27 // column 5 to 8
28 //
29 // 0 . 6666667 0 . 0 . 6 666667 0 .
30 //
31 // SQNR =
32 //
33 // 9 . 5424251

20

Experiment: 7

Convolutional Coding using
Transform Domain Approach

check Appendix AP 5 for dependency:

ConvolutionCode_TransDomain_new.sci

Scilab code Solution 7.7 7

1 // Convo l u t i ona l Coding Using Transform Domain
Approach

2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 close;

7 //Note : P l e a s e run the Convolut ionCode TransDomain .
s c i dependency f i l e b e f o r e e x e c u t i n g t h i s program

8 //Note : Don ’ t run the c l e a r command a f t e r runn ing
the dependency (Convolut ionCode TransDomain new .
s c i) as i t c o n t a i n s the r e q u i r e d f u n t i o n which
w i l l be c l e a r e d by the c l e a r command

9

10 // Execut i on

21

11 [x1D ,x2D]= ConvolutionCode_TransDomain_new ()

12

13 //Output
14 // Enter the g e n e r a t o r po lynomia l 1=1+Dˆ2+Dˆ3
15 //
16 // Enter the g e n e r a t o r po lynomia l 2=1+Dˆ1
17 //
18 // Enter the message s equence1+Dˆ1+Dˆ2+Dˆ3+Dˆ4
19 //
20 //
21 // top output s equence
22 //
23 // 1 . 1 . 0 . 1 . 1 . 0 . 0 . 1 .
24 //
25 // bottom output s equence
26 //
27 // 1 . 0 . 0 . 0 . 0 . 1 .

22

Experiment: 8

Duobinary Signaling -
Amplitude & Phase Response

check Appendix AP 4 for dependency:

Duobinary_Signaling_new.sci

Scilab code Solution 8.8 8

1 // Duobinary S i g n a l i n g Scheme − Magnitude and Phase
Response

2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 close;

7 //Note : P l e a s e run the Duob i n a r y S i n g a l i n g . s c i
dependecy f i l e b e f o r e e x e c u t i n g t h i s program

8 //Note : Don ’ t run the c l e a r command a f t e r runn ing
the dependency (Duob i n a r y S i gna l i n g . s c i) as i t
c o n t a i n s the r e q u i r e d f u n t i o n which w i l l be
c l e a r e d by the c l e a r command

23

Figure 8.1: 8

9

10 // Execut i on
11 [Amplitude_Response ,Phase_Response]=

Duobinary_Signaling_new ()

12

13 //Output
14 // Enter the b i t r a t e= 8

24

Experiment: 9

Power Spectrum of Discrete
PAM Signal

check Appendix AP 3 for dependency:

PowerSpectra_PAM_new.sci

check Appendix AP 1 for dependency:

sinc_newfunc_new.sci

Scilab code Solution 9.9 9

1 //Power Spectrum Of D i s c r e t e PAM S i g n a l s
2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 close;

7 //Note : P l e a s e run the s i n c n ew fun c . s c i dependency
f i l e b e f o r e e x e c u t i n g t h i s program

8 //Note : P l e a s e run the PowerSpectra PAM . s c i
dependency f i l e b e f o r e e x e c u t i n g t h i s program

25

Figure 9.1: 9

9 //Note : Don ’ t run the c l e a r command a f t e r runn ing
the d ep enden c i e s (s i n c new func new . s c i ,
PowerSpectra PAM new . s c i) as i t c o n t a i n s the
r e q u i r e d f u n t i o n which w i l l be c l e a r e d by the
c l e a r command

10

11

12 // Execut i on
13 [Sxxf_NRZ_P ,Sxxf_NRZ_BP ,Sxxf_NRZ_UP ,Sxxf_Manch]=

PowerSpectra_PAM_new ()

14

15 //Output
16 // Enter the Amplitude va lu e : 1
17 // Enter the b i t r a t e : 1

26

Experiment: 10

Power Spectrum of MSK &
QPSK

check Appendix AP 2 for dependency:

PowerSpectra_MSK_QPSK_new.sci

check Appendix AP 1 for dependency:

sinc_newfunc_new.sci

Scilab code Solution 10.10 10

1 //Power Spectrums o f QPSK and MSK
2 //Windows 7
3 // S c i l a b 6 . 0 . 0
4

5 clc;

6 close;

7 //Note : P l e a s e run the s i n c n ew fun c . s c i dependency
f i l e b e f o r e e x e c u t i n g t h i s program

8 //Note : P l e a s e run the PowerSpectra MSK QPSK . s c i
dependency f i l e b e f o r e e x e c u t i n g t h i s program

27

Figure 10.1: 10

9 //Note : Don ’ t run the c l e a r command a f t e r runn ing
the d ep enden c i e s (s i n c new func new . s c i ,
PowerSpectra MSK QPSK new . s c i) as i t c o n t a i n s the
r e q u i r e d f u n t i o n which w i l l be c l e a r e d by the

c l e a r command
10

11 // Execut i on
12 [SB_MSK ,SB_QPSK]= PowerSpectra_MSK_QPSK_new ()

13 // Enter the b i t r a t e i n b i t s per second : 2
14 // Enter the Energy o f b i t : 1

28

Appendix

Scilab code AP 11 clc;

2 close;

3

4 function [y]= sinc_newfunc_new(x)

5 i=find(x==0);

6 x(i)= 1;

7 y = sin(%pi*x)./(%pi*x);

8 y(i) = 1;

9 endfunction

sinc new

Scilab code AP 21 clc;

2 close;

3

4 function [SB_MSK ,SB_QPSK]= PowerSpectra_MSK_QPSK_new

()

5 rb = input(’ Enter the b i t r a t e i n b i t s per second : ’)
;

6 Eb = input(’ Enter the Energy o f b i t : ’);
7 f = 0:1/(100* rb):(4/rb);

8 Tb = 1/rb; // b i t du r a t i on i n s e cond s
9 for i = 1: length(f)

10 if(f(i)==0.5)

11 SB_MSK(i) = 4*Eb*f(i);

12 else

13 SB_MSK(i) = (32*Eb/(%pi^2))*(cos(2*%pi*Tb*f(i))

29

/((4*Tb*f(i))^2-1))^2;

14 end

15 SB_QPSK(i)= 4*Eb*sinc_newfunc_new ((2*Tb*f(i)))

^2;

16 end

17 a = gca();

18 plot(f*Tb,SB_MSK /(4*Eb));

19 plot(f*Tb,SB_QPSK /(4*Eb));

20 poly1= a.children (1).children (1);

21 poly1.foreground = 3;

22 xlabel(’ Normal i zed Frequency −−−−> ’)
23 ylabel(’ Normal i zed Power S p e c t r a l Dens i ty−−−> ’)
24 title(’QPSK Vs MSK Power Spe c t r a Comparison ’)
25 legend ([’Minimum Sh i f t Keying ’ , ’QPSK ’])
26 xgrid (1)

27 endfunction

MSK QPSK new

Scilab code AP 31 clc;

2 close;

3

4 function [Sxxf_NRZ_P ,Sxxf_NRZ_BP ,Sxxf_NRZ_UP ,

Sxxf_Manch]= PowerSpectra_PAM_new ()

5 a = input(’ Enter the Amplitude va l u e : ’);
6 fb = input(’ Enter the b i t r a t e : ’);
7 Tb = 1/fb; // b i t du r a t i on
8 f = 0:1/(100* Tb):2/Tb;

9 for i = 1: length(f)

10 Sxxf_NRZ_P(i) = (a^2)*Tb*(sinc_newfunc_new(f(i)*Tb

)^2);

11 Sxxf_NRZ_BP(i) = (a^2)*Tb*((sinc_newfunc_new(f(i)*

Tb))^2)*((sin(%pi*f(i)*Tb))^2);

12 if (i==1)

13 Sxxf_NRZ_UP(i) = (a^2)*(Tb/4)*((sinc_newfunc_new

(f(i)*Tb))^2)+(a^2)/4;

14 else

30

15 Sxxf_NRZ_UP(i) = (a^2)*(Tb/4)*((sinc_newfunc_new

(f(i)*Tb))^2);

16 end

17 Sxxf_Manch(i) = (a^2)*Tb*(sinc_newfunc_new(f(i)*Tb

/2) ^2)*(sin(%pi*f(i)*Tb/2) ^2);

18 end

19

20 // P l o t t i n g
21 a = gca();

22 plot2d(f,Sxxf_NRZ_P)

23 poly1= a.children (1).children (1);

24 poly1.thickness = 2; // the t h i c k n e s s o f a curve .
25 plot2d(f,Sxxf_NRZ_BP ,2)

26 poly1= a.children (1).children (1);

27 poly1.thickness = 2; // the t h i c k n e s s o f a curve .
28 plot2d(f,Sxxf_NRZ_UP ,5)

29 poly1= a.children (1).children (1);

30 poly1.thickness = 2; // the t h i c k n e s s o f a curve .
31 plot2d(f,Sxxf_Manch ,9)

32 poly1= a.children (1).children (1);

33 poly1.thickness = 2; // the t h i c k n e s s o f a curve .
34 xlabel(’ f ∗Tb−−−−−−−> ’)
35 ylabel(’ Sxx (f)−−−−−−−> ’)
36 title(’ Power S p e c t r a l D e n s i t i e s o f D i f f e r e n t L ine

Coding Techn iques ’)
37 xgrid (1)

38 legend ([’NRZ Po la r Format ’ , ’NRZ B ipo l a r Format ’ , ’NRZ
Un ipo l a r Format ’ , ’ Manchester Format ’]);

39 endfunction

PS PAM new

Scilab code AP 41 clc;

2 clear;

3 close;

4

5 function [Amplitude_Response ,Phase_Response]=

Duobinary_Signaling_new ()

31

6 rb = input(’ Enter the b i t r a t e= ’);
7 Tb =1/rb; // Bi t du r a t i on
8 f = -rb /2:1/100: rb/2;

9 Amplitude_Response = abs (2*cos(%pi*f.*Tb));

10 Phase_Response = -(%pi*f.*Tb);

11 subplot (2,1,1)

12 a=gca();

13 a.x_location =” o r i g i n ”;
14 a.y_location =” o r i g i n ”;
15 plot(f,Amplitude_Response)

16 xlabel(’ Frequency f−−−−> ’)
17 ylabel(’ |H(f) | −−−−−> ’)
18 title(’ Amplitude Response o f Duobinary S i g n a l i n g ’)
19 subplot (2,1,2)

20 a=gca();

21 a.x_location =” o r i g i n ”;
22 a.y_location =” o r i g i n ”;
23 plot(f,Phase_Response)

24 xlabel(’ Frequency f−−−−> ’)
25 ylabel(’ <H(f) −−−−−> ’)
26 title(’ Phase Response o f Duobinary S i g n a l i n g ’)
27 endfunction

Duobinary Signalling new

Scilab code AP 51 clc;

2 clear;

3 close;

4

5 function [x1D ,x2D]= ConvolutionCode_TransDomain_new

()

6 //g1D = gen e r a t o r po lynomia l 1
7 //g2D = gen e r a t o r po lynomia l 2
8 //x1D = top output s equence po lynomia l
9 //x2D = bottom output s equence po lynomia l
10 D = poly(0, ’D ’);
11 g1D = input(’ Enter the g e n e r a t o r po lynomia l 1= ’) //

g e n e r a t o r po lynomia l 1

32

12 g2D = input(’ Enter the g e n e r a t o r po lynomia l 2= ’) //
g e n e r a t o r po lynomia l 2

13 mD = input(’ Enter the message s equence ’)// message
s equence po lynomia l r e p r e s e n t a t i o n

14 x1D = g1D*mD; // top output po lynomia l
15 x2D = g2D*mD; // bottom output po lynomia l
16 x1 = coeff(x1D);

17 x2 = coeff(x2D);

18 disp(modulo(x1 ,2), ’ top output s equence ’)
19 disp(modulo(x2 ,2), ’ bottom output s equence ’)
20 endfunction

Conv Code new

Scilab code AP 61 clc;

2 clear;

3 close;

4

5 function [SQNR ,xq,en_code] = uniform_pcm(x,L)

6 //x = input s equence
7 //L = number o f q u n a t i z a t i o n l e v e l s
8 xmax = max(abs(x));

9 xq = x/xmax;

10 en_code = xq;

11 d = 2/L;

12 q = d*[0:L-1];

13 q = q-((L-1) /2)*d;

14 for i = 1:L

15 xq(find (((q(i)-d/2) <= xq)&(xq <=(q(i)+d/2))))=...

16 q(i).*ones(1,length(find (((q(i)-d/2) <=xq)&(xq <=(

q(i)+d/2)))));

17 en_code(find(xq == q(i)))= (i-1).*ones(1,length(

find(xq == q(i))));

18 end

19 xq = xq*xmax;

20 SQNR = 20* log10(norm(x)/norm(x-xq));

21 endfunction

33

uniformpcm

Scilab code AP 71 clc;

2 clear;

3 close;

4

5 // Funct ion to per fo rm XOR op e r a t i o n on the operands
6 function [value] = xor(A,B)

7 if(A==B)

8 value = 0;

9 else

10 value = 1;

11 end

12 endfunction

xor

Scilab code AP 81 clc;

2 clear;

3 close;

4

5 // Funct ion to per fo rm XOR op e r a t i o n on the operands
6 function [value] = xor_new(A,B)

7 if(A==B)

8 value = 0;

9 else

10 value = 1;

11 end

12 endfunction

XOR new

Scilab code AP 91 clc;

2 clear;

3 close;

4

5 function[n,p,r] = ReedSolomon_Codes(n,k,s)

34

6 // S i n g l e−e r r o r−c o r r e c t i n g RS code with a s−b i t byte
7 //n=code word
8 //k=i n f o rma t i o n b i t
9 // s=no o f b i t symbols
10 t =(n-k)/2; // s i n g l e b i t e r r o r c o r r e c t i o n
11 //n = 2ˆ s−1; // code word l e n g t h i n 2−b i t byte
12 p = n-k; // p a r i t y b i t s l e n g t h i n 2−b i t byte
13 r = k/n; // code r a t e
14 // d i s p (n , ’ code word l e n g t h i n s−b i t byte n = ’)
15 disp(p, ’ p a r i t y b i t s l e n g t h i n s−b i t byte n−k= ’)
16 disp(r, ’ Code r a t e : r = k/n = ’)
17 disp (2*t, ’ I t can d e t e c t any e r r o r upto = ’)
18 disp(t, ’ I t can c o r r e c t any e r r o r upto = ’)
19 endfunction

ReedSolomonCodes

35

	
	Reed Solomon Codes
	Duobinary Encoder & Decoder
	Differential Phase Shift Keying
	PseudoNoise Sequence Generator
	Unipolar NRZ
	Uniform Quantization PCM
	Convolutional Coding using Transform Domain Approach
	Duobinary Signaling - Amplitude & Phase Response
	Power Spectrum of Discrete PAM Signal
	Power Spectrum of MSK & QPSK

