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Experiment: 1

Generate AND NOT function
using McCulloch-Pitts neural
net

Scilab code Solution 1.1 1

// Generate AND NOT function wusing McCulloch—Pitts
neural net

// Windows 10

//Scilab 5.4.1

clear;

clc;

//Generate weights and threshold value
disp(’Enter the weights’);
wl=input (" Weight wl=");
w2=input ("' Weight w2=");

disp(’Enter Threshold Value’);
theta=input (’theta=");

y=[0 0 0 0];

x1=[0 0 1 1];

x2=[0 1 0 1];

z=[0 0 1 0];
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con=1;
while con
zin=x1*xwl+x2*xw2;
for i=1:4
if zin(i)>=theta
y(i)=1;
else
y (i) =0;
end
end
disp (’Output of Net’);
disp(y);
if y==z
con=0;
else
disp(’Net is not learning enter another set of
weights and Threshold value’);
wl=input ('weight wl=");
w2=input ( "weight w2=");
theta=input (’theta=");
end
end
disp(’Mcculloch—Pitts Net for ANDNOT function ') ;
disp (' Weights of Neuron’);
disp(wl);
disp(w2);
disp(’Threshold value’);
disp(theta);

//Truth Table

//X1 X2 Y
/J0 0 0
/0 1 0
/10 1
//1 1 0
// Output

//Enter the weights
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// Weight wl=1
// Weight w2=1

//
//

Enter Threshold Value

//theta=0.1

//
//

//
//

Output of Net

0. 1. 1. 1.

Net is not learning enter another set of weights
and Threshold v

alue

//weight wl=1
//weight w2=-1

//theta=1

//

// Output of Net

//

/) 0. 0. 1. 0.
//

// Mcculloch—Pitts Net for ANDNOT function
//

// Weights of Neuron

//

// L.

//

/] = 1.

//

// Threshold value

//

// 1.
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Experiment: 2

McCulloch-Pitts Net for XOR

function

Scilab code Solution 2.2 2

//McCulloch—Pitts for XOR function
//Windows 10

//Scilab 5.4.1

clear;

clc;

//Getting weights and threshold value
disp (' Enter weights’);
will=input ("Weight wll=");
wil2=input ("weight wl2=");
w2l=input ("Weight w21=");
w22=input ("weight w22=");
vi=input ('weight v1=");
v2=input ( "weight v2=");
disp(’Enter Threshold Value’);
theta=input (’theta=");

x1=[0 0 1 1];

x2=[0 1 0 1];

z=[0;1;1;0];



20 con=1;
21 while con
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zinl
zin?2
for

end

yin=

for

end
disp
disp

=x1*wll+x2*w21;
=x1*xw21+x2*%w22;
i=1:4
if zinl1(i)>=theta
y1(i)=1;
else
y1(i)=0;
end
if zin2 (i) >=theta
y2(i)=1;
else
y2(i)=0;
end

yl*xvli+y2*xv2;
i=1:4
if yin(i)>=theta;
y(i)=1;
else
y(i)=0;
end

(’Output of Net’);
(y);

if y == z

else

con=0;

disp(’Net is not learning enter another
weights and Threshold value’);

will=input ("Weight wll=");

wil2=input ("weight wl2=");
w2l=input (' Weight w2l=");

w22=input ("weight w22=");

vi=input ('weight vl=");

v2=input ("weight v2=");

theta=input (’theta=");
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end
end

disp ("McCulloch—Pitts Net for XOR function ’);
disp(’Weights of Neuron Z17);

disp(will);
disp (w21);

disp(’weights

disp(w1l2);
disp (w22);

disp(’weights
disp(vl);
disp(v2);

disp(’Threshold value’);
disp (theta);

//Truth Table
//X1 X2 Y

//0 0
//0 1
//1 0
//1 1

// Output

// Enter
// Weight
//weight
// Weight
//weight
//weight
//weight

//
// Enter

//theta=1

//

0

[ R S

weights
wll=1
wl2=-—1
w2l=-1
w22=1
vi=1
v2=1

Threshold Value

// Output of Net

//
// 0.

of Neuron Z27);

of Neuron Y');



905 // 1.

9% // 1.
or /0.
08 //

99 // McCulloch—Pitts Net for XOR function

100 //
101 // Weights of Neuron Z1

102 //

103 // 1.

104 //

105 // — 1.

106 //

107 // weights of Neuron Z2
108 //

09 // — 1.

110 //

11 // 1.

12 //

113 // weights of Neuron Y
14 //

115 // 1.

116 //

17 // 1.

118 //

119 // Threshold value

120 //

121 // 1.
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Experiment: 3

Hebb Net to classify two
dimensional input patterns

Scilab code Solution 3.3 3

//Hebb Net to classify two dimensional input
patterns

//Windows 10

//Scilab 5.4.1

clear;

clc;

//Input Patterns

E={1 1111 -1 -1 -1

F=[1 1111 -1 -1 -1

-11;

x(1,1:20)=E;

x(2,1:20)=F;

w(1:20)=0;

w=w’

t=[1 -1];

b=0;

for i=1:2
w=w+x(1i,1:20)*xt(1i);

-1 -1 -11111];

11111
11111 -1 -1-11-1 -1

11



18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40

end

b=b+t (i) ;

disp(’Weight matrix’);
disp(w);
disp (’Bias ) ;
disp(b);

// Output

Weight

Bias

matrix

0.

column 1 to 18

0. 0. 0. 0./

column 19 to 20

12
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Experiment: 4

Hetro associative neural net

Scilab code Solution 4.4 4

//Hetro associative neural net
//Windows 10

//Scilab 5.4.1

clear;

clc;

1110;0110];

x=[1 1 0 0;1 O ;
1 1

t=[1 0;1 0;0

w=zeros (4,2);

for i=1:4
w=w+x(i,1:4)’*xt(i,1:2);

10
;0 1

end
disp (’Weight matrix’) ;
disp(w);

//Auotassociative net to store the vector
x=[1 1 -1 -1];

xv=[1;1;-1;-171;
w=zeros (4,4) ;

13
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W=X’*X;
yin=x*w,
for i=1:4

if yin(i)>0

y(i)=1;
else
y(i)=-1;

end
end
disp(’Weight matrix ’);
disp(w);
if xv==y

disp(’The vector is a Known Vector’);
else

disp(’The vector is an Unknown Vector’);
end
// Output
// Weight matrix
//
// 2 1.
// 1 2.
// 1 2.
// 0 0.
//
// Weight matrix
//
// 1. 1. —-1. -1.
// 1. 1. —-1. -—1.
// —1. —1. 1. 1.
//  —=1. —1. 1. 1.
//
// The vector is a Known Vector

14



Experiment: 5

Discrete Hopfield net

Scilab code Solution 5.5 5

//Discrete Hopfield net
//Windows 10

//Scilab 5.4.1

clear;

clc;

x=[1 11 0];
tx=[0 0 1 0];
wl=(2xx’-1);
w2=(2*xx-1) ;
w=wl*w2;

© 00 J O U i W N
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for i=1:4
w(i,i)=0;

—_ =
(G2

end

con=1;

y=[0 0 1 0];

while con

19 up=[4 2 1 3];

20 for i=1:4

21 yin(up(i))=tx(up(i))+y*w(1:4,up(i));

[
co 3 O

15
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// Convergence has been obtained

end
end
if y==x
disp (y);
con=0;
end
end
// Output
//
// The Converged Ouput
//
// 1. 1.

if yin(up(i))>0
y(up(i))=1;

disp(’Convergence has been obtained ’);
disp(’The Converged Ouput’);

1.

0.

16
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Experiment: 6

Kohonen self organizing maps

Scilab code Solution 6.6 6

//Kohonen self organizing maps
//Windows 10

//Scilab 5.4.1

clear;

clc;

x=[1 1 0 0;0 00 1;1 0 0 0;0 0 1 17;
alpha=0.6;

//initial weight matrix
w=rand (4,2) ;
disp(’Initial weight matrix’);
disp(w);
con=1;
epoch=0;
while con
for i=1:4
for j=1:2
D(j)=0;
for k=1:4
D(j)=D(j)+(w(k,j)-x(i,k))"2;

17
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end
end
for j=1:2
if D(j)==min (D)
J=3;
end
end
w(:,J)=w(:,J)+alpha*x(x(i,:)’-w(:,J));
end
alpha=0.5*alpha;
epoch=epoch+1;
if epoch==300
con=0;
end
end
disp (’Weight Matrix after 300 epoch’);
disp(w);
// Output
// Initial weight matrix
//
// 0.2113249 0.6653811
// 0.7560439 0.6283918
// 0.0002211 0.8497452
// 0.3303271 0.685731
//
// Weight Matrix after 300 epoch
//
// 0.9671633 0.0277033
// 0.4283588 0.0261632
// 0.0000092 0.5968633
// 0.0137532 0.9869153

18
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Experiment: 7

Learning Vector Quantisation

Scilab code Solution 7.7 7

s=[1 1 00;000 1;00 1 1;1 00 0;0 1 1 0];

//Learning Vector Quantization

//Windows 10

//Scilab 5.4.1

clear;

clc;

st=[1 2 2 1 2];

alpha=0.6;

//initial weight matrix first two vectors

patterns
w=[s(1,:);s(2,:)]17;

disp(’Initial weight matrix’);

disp(w);

//set remaining as input vector

x=[s(3,:);8(4,:);8(5,:)];
t=[st(3);st(4);st(5)];
con=1;

epoch=0;

19
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while con
for i=1:3
for j=1:2
D(j)=0;
for k=1:4
D(j)=D(j)+(w(k,j)-x(i,k))"2;
end
end
for j=1:2
if D(j)==min(D)
J=3;
end
end
if J==t(i)
w(:,J)=w(:,J)+alpha*x(x(i,:)’-w(:,J));
else
w(:,J)=w(:,J)-alpha*(x(i,:)’-w(:,J));
end
end
alpha=0.b5*alpha;
epoch=epoch+1;
if epoch==100
con=0;
end
end
disp(’Weight Matrix after 100 epochs’);
disp(w);

// Output
// Initial weight matrix

//
//
//
//
//
//
// Weight Matrix after 100 epochs

//

O O = =
— o O O

20



59 //
60 //
61 //
62 //

SO O

.2040471

0.
0.561484

0.9583648

0.438516
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Experiment: 8

Full Counter Propagation
Network for given input pair

Scilab code Solution 8.8 8

//Full counter propagation network for given input
pair

//Windows 10

//Scilab 5.4.1

clear;

clc;

//set initial weights
v=[0.6 0.2;0.6 0.2;0.2 0.6; 0.2 0.6];
w=[0.4 0.3;0.4 0.3];
x=[0 1 1 0];
y=[1 0];
alpha=0.3;
for j=1:2
D(j)=0;
for i=1:4
D(j)=D(j)+(x(i)-v(i,j)) ~2;
end
for k=1:2

22
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end
for j=1:2

end

disp(’After one step the weight matrix are’);
v(:,J)=v(:,J)+alpha*(x’-v(:,J))
w(:,J)=w(:,J)+alpha*(y’-w(:,J))

After one step the weight matrix are

D(§)=D(j)+(y (k) -w(k,j)) 2;

end

if D(j)==min (D)

end

J=7;

disp(’v’)
disp (v)
disp(’'w’)
disp (w)
//Output
//

//

//

/]

//

// 0.42
// 0.72
// 0.44
// 0.14
//

/] w

//

// 0.58
// 0.28

o O OO

SO NN

23



Experiment: 9

ART1 Neural Net

Scilab code Solution 9.9 9

//ART1 Neural Net

N O O W N

© 0o
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19
20

//Windows 10
//Scilab 5.4
clear;

clc;

b=[0.57 0.0 0.3;0.0 0.0 0.3;0.0 0.57 0.3;0.0 0.47

0.3];

1

t=[1 1 0 0;1 00 1;1 1 1 1];

vp=0.4;

L=2;

x=[1 0 1 1];
S=Xx;
ns=sum(s) ;
y=Xx*b;
con=1;

while con

for i=1:3

if y(i)==max(y)

end

J=1;

24
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end

x=s.*t(J,:);
nx=sum(x) ;
if nx/ns >= vp

b(:,J)=L*x(:)/(L-1+nx) ;
t(J,:)=x(1,:);

con=0;
else
y(J)=-1;
con=1;
end
if y+1==
con=0;
end
end
disp(’Top Down Weights ) ;
disp(t);
disp(’Bottom up Weights ) ;
disp(b);
//Output
// Top Down Weights
//
// 1. 1. 0. 0.
// 1. 0. : 1.
// 1. 1. 1. 1.
//
// Bottom up Weights
//
// 0.57 0.6666667 0.3
// 0. 0. 0.3
// 0. 0. 0.3
// 0. 0.6666667 0.3

25
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Experiment: 10

MLP

Scilab code Solution 10.10 10

//MLP Algorithm and implementation
//Windows 10

//Scilab 5.4.1

clear;

clc;

deff (Cy=f(x)’, 'y=1/(1+exp(—-x)) ")
Wih=[0.1,-0.3;0.3,0.4];
Who=[0.4;0.5]
i=[0.2,0.6];
t=0.7;
a=10;
for k=1:3
printf (’\n\n\nAfter Iteration %i
disp (Wih, "Wih = 7)

disp (Who, "Who = )
al=i*Wih;
disp(al,’a = ")
h=[f(al1(1)),f(al1(2))]
disp(h,’h = 7)
bl=h*xWho

26
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disp(bl,’bl =7)

o=f(bl)

disp(o,’0o = 7)

d=o*(1-0)*(t-0)

disp(d,’d =")

for j=1:2
e(1,j)=h(j)*(1-h(j))*d*Who(j)

end

disp(e,’e =")

dWho=a*h’*d;

disp (dWho, ’7dWho =")

Who=Who+dWho;

dWih=a*i’*e;

disp(dWih, "dWih =7)

Wih=Wih+dWih;

end

// Output
// After Iteration 1

//

//
// Wik =

/) 0.1 —0.3
/] 0.3 0.4

// Who =

// 0.2  0.18

// 0.549834 0.5448789
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/] bl =

/) 0.492373

//  0.6206653

// 0.0186786

//  0.0018493

// dWho =

/) 0.102701
//  0.1017755

// dWih =
//
// 0.0036986

// 0.0110958

0.002316

0.004632
0.0138961

// After Iteration 2 :

//

//

/] Wih =

//

/) 0.1036986
/) 0.3110958

//
// Who =

—0.295368
0.4138961
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114
115
116
117
118
119
120
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122
123
124
125
126
127
128
129
130
131
132
133
134
135

0.502701
0.6017755

0.2073972

0.5516642

bl =

0.6065989

0.6471646

0.0120646

0.0015

dWho =

0.066556
0.0660144

dWih =

0.0030001
0.0090002

0.189264

0.5471753

0.0017989

0.0035978
0.0107933
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//
//

// After Iteration 3

//
//
//
//
//
//

Wih =

0.1066987
0.320096

Who =

bl

=}

069257
6677899

o

0.2133973

0.5531478

0.6814715

0.6640671

0.008016

0.0011279

—0.2917702
0.4246894

0.1964596

0.5489575

0.0013254
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//
//
//
//
//
//
//
//
//
//

dWho =

0.0443403
0.0440044

dWih =

0.0022558
0.0067674

0.0026508
0.0079525

31
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