
Scilab Manual for
Neural Networks

by Dr G V Maha Lakshmi
Electronics Engineering

Sreenidhi Institute Of Science And
Technology1

Solutions provided by
Dr G V Maha Lakshmi
Electronics Engineering

Sreenidhi Institute Of Science And Technology

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in



1



Contents

List of Scilab Solutions 3

1 Generate AND NOT function using McCulloch-Pitts neural
net 4

2 McCulloch-Pitts Net for XOR function 7

3 Hebb Net to classify two dimensional input patterns 11

4 Hetro associative neural net 13

5 Discrete Hopfield net 15

6 Kohonen self organizing maps 17

7 Learning Vector Quantisation 19

8 Full Counter Propagation Network for given input pair 22

9 ART1 Neural Net 24

10 MLP 26

2



List of Experiments

Solution 1.1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Solution 2.2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Solution 3.3 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Solution 4.4 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Solution 5.5 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Solution 6.6 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Solution 7.7 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Solution 8.8 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Solution 9.9 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Solution 10.10 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



Experiment: 1

Generate AND NOT function
using McCulloch-Pitts neural
net

Scilab code Solution 1.1 1

1 // Generate AND NOT f un c t i o n u s i n g McCulloch−P i t t s
n eu r a l net

2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // Generate we i gh t s and t h r e s h o l d va lu e
8 disp( ’ Enter the we i gh t s ’ );
9 w1=input( ’ Weight w1= ’ );
10 w2=input( ’ Weight w2= ’ );
11 disp( ’ Enter Thresho ld Value ’ );
12 theta=input( ’ t h e t a= ’ );
13 y=[0 0 0 0];

14 x1=[0 0 1 1];

15 x2=[0 1 0 1];

16 z=[0 0 1 0];
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17 con =1;

18 while con

19 zin=x1*w1+x2*w2;

20 for i=1:4

21 if zin(i)>=theta

22 y(i)=1;

23 else

24 y(i)=0;

25 end

26 end

27 disp( ’ Output o f Net ’ );
28 disp(y);

29 if y==z

30 con =0;

31 else

32 disp( ’ Net i s not l e a r n i n g e n t e r ano the r s e t o f
we i gh t s and Thresho ld va lu e ’ );

33 w1=input( ’ we ight w1= ’ );
34 w2=input( ’ we ight w2= ’ );
35 theta=input( ’ t h e t a= ’ );
36 end

37 end

38 disp( ’ Mccul loch−P i t t s Net f o r ANDNOT f un c t i o n ’ );
39 disp( ’ Weights o f Neuron ’ );
40 disp(w1);

41 disp(w2);

42 disp( ’ Thre sho ld va l u e ’ );
43 disp(theta);

44

45 //Truth Table
46 //X1 X2 Y
47 // 0 0 0
48 // 0 1 0
49 // 1 0 1
50 // 1 1 0
51

52 //Output
53 // Enter the we i gh t s
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54 //Weight w1=1
55 //Weight w2=1
56 //
57 // Enter Thresho ld Value
58 // th e t a =0.1
59 //
60 // Output o f Net
61 //
62 // 0 . 1 . 1 . 1 .
63 //
64 // Net i s not l e a r n i n g e n t e r ano the r s e t o f we i gh t s

and Thresho ld v
65 // a l u e
66 // we ight w1=1
67 // we ight w2=−1
68 // th e t a=1
69 //
70 // Output o f Net
71 //
72 // 0 . 0 . 1 . 0 .
73 //
74 // Mccul loch−P i t t s Net f o r ANDNOT f un c t i o n
75 //
76 // Weights o f Neuron
77 //
78 // 1 .
79 //
80 // − 1 .
81 //
82 // Thresho ld va lu e
83 //
84 // 1 .
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Experiment: 2

McCulloch-Pitts Net for XOR
function

Scilab code Solution 2.2 2

1 //McCulloch−P i t t s f o r XOR f un c t i o n
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // Get t ing we i gh t s and t h r e s h o l d va lu e
8 disp( ’ Enter we i gh t s ’ );
9 w11=input( ’ Weight w11= ’ );

10 w12=input( ’ we ight w12= ’ );
11 w21=input( ’ Weight w21= ’ );
12 w22=input( ’ we ight w22= ’ );
13 v1=input( ’ we ight v1= ’ );
14 v2=input( ’ we ight v2= ’ );
15 disp( ’ Enter Thresho ld Value ’ );
16 theta=input( ’ t h e t a= ’ );
17 x1=[0 0 1 1];

18 x2=[0 1 0 1];

19 z=[0;1;1;0];
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20 con =1;

21 while con

22 zin1=x1*w11+x2*w21;

23 zin2=x1*w21+x2*w22;

24 for i=1:4

25 if zin1(i)>=theta

26 y1(i)=1;

27 else

28 y1(i)=0;

29 end

30 if zin2(i)>=theta

31 y2(i)=1;

32 else

33 y2(i)=0;

34 end

35 end

36 yin=y1*v1+y2*v2;

37 for i=1:4

38 if yin(i)>=theta;

39 y(i)=1;

40 else

41 y(i)=0;

42 end

43 end

44 disp( ’ Output o f Net ’ );
45 disp(y);

46 if y == z

47 con =0;

48 else

49 disp( ’ Net i s not l e a r n i n g e n t e r ano the r s e t o f
we i gh t s and Thresho ld va lu e ’ );

50 w11=input( ’ Weight w11= ’ );
51 w12=input( ’ we ight w12= ’ );
52 w21=input( ’ Weight w21= ’ );
53 w22=input( ’ we ight w22= ’ );
54 v1=input( ’ we ight v1= ’ );
55 v2=input( ’ we ight v2= ’ );
56 theta=input( ’ t h e t a= ’ );
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57 end

58 end

59 disp( ’ McCulloch−P i t t s Net f o r XOR f un c t i o n ’ );
60 disp( ’ Weights o f Neuron Z1 ’ );
61 disp(w11);

62 disp(w21);

63 disp( ’ we i gh t s o f Neuron Z2 ’ );
64 disp(w12);

65 disp(w22);

66 disp( ’ we i gh t s o f Neuron Y ’ );
67 disp(v1);

68 disp(v2);

69 disp( ’ Thre sho ld va l u e ’ );
70 disp(theta);

71

72 //Truth Table
73 //X1 X2 Y
74 // 0 0 0
75 // 0 1 1
76 // 1 0 1
77 // 1 1 0
78

79 //Output
80

81 // Enter we i gh t s
82 //Weight w11=1
83 // we ight w12=−1
84 //Weight w21=−1
85 // we ight w22=1
86 // we ight v1=1
87 // we ight v2=1
88 //
89 // Enter Thresho ld Value
90 // th e t a=1
91 //
92 // Output o f Net
93 //
94 // 0 .
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95 // 1 .
96 // 1 .
97 // 0 .
98 //
99 // McCulloch−P i t t s Net f o r XOR f un c t i o n

100 //
101 // Weights o f Neuron Z1
102 //
103 // 1 .
104 //
105 // − 1 .
106 //
107 // we i gh t s o f Neuron Z2
108 //
109 // − 1 .
110 //
111 // 1 .
112 //
113 // we i gh t s o f Neuron Y
114 //
115 // 1 .
116 //
117 // 1 .
118 //
119 // Thresho ld va lu e
120 //
121 // 1 .
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Experiment: 3

Hebb Net to classify two
dimensional input patterns

Scilab code Solution 3.3 3

1 //Hebb Net to c l a s s i f y two d imen s i ona l i nput
p a t t e r n s

2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // Input Pa t t e rn s
8 E=[1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 1 1 1];

9 F=[1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 -1

-1];

10 x(1 ,1:20)=E;

11 x(2 ,1:20)=F;

12 w(1:20) =0;

13 w=w’

14 t=[1 -1];

15 b=0;

16 for i=1:2

17 w=w+x(i ,1:20)*t(i);
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18 b=b+t(i);

19 end

20 disp( ’ Weight matr ix ’ );
21 disp(w);

22 disp( ’ B ia s ’ );
23 disp(b);

24

25 //Output
26 //
27 // Weight matr ix
28 //
29 //
30 // column 1 to 18
31 //
32 // 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

0 . 0 . 0 . 0 . 0 . / / 0 . 0 . 2 .
33 //
34 // column 19 to 20
35 //
36 // 2 . 2 .
37 //
38 // Bias
39 //
40 // 0 .
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Experiment: 4

Hetro associative neural net

Scilab code Solution 4.4 4

1 // Hetro a s s o c i a t i v e n eu r a l net
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 x=[1 1 0 0;1 0 1 0;1 1 1 0;0 1 1 0];

8 t=[1 0;1 0;0 1;0 1];

9 w=zeros (4,2);

10 for i=1:4

11 w=w+x(i ,1:4) ’*t(i ,1:2);

12 end

13 disp( ’ Weight matr ix ’ );
14 disp(w);

15

16

17 // Auo t a s s o c i a t i v e net to s t o r e the v e c t o r
18

19 x=[1 1 -1 -1];

20 xv=[1;1; -1; -1];

21 w=zeros (4,4);
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22 w=x’*x;

23 yin=x*w;

24 for i=1:4

25 if yin(i)>0

26 y(i)=1;

27 else

28 y(i)=-1;

29 end

30 end

31 disp( ’ Weight matr ix ’ );
32 disp(w);

33 if xv==y

34 disp( ’ The v e c t o r i s a Known Vector ’ );
35 else

36 disp( ’ The v e c t o r i s an Unknown Vector ’ );
37 end

38

39 //Output
40 // Weight matr ix
41 //
42 // 2 . 1 .
43 // 1 . 2 .
44 // 1 . 2 .
45 // 0 . 0 .
46 //
47 // Weight matr ix
48 //
49 // 1 . 1 . −1. −1.
50 // 1 . 1 . −1. −1.
51 // −1. −1. 1 . 1 .
52 // −1. −1. 1 . 1 .
53 //
54 // The v e c t o r i s a Known Vector
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Experiment: 5

Discrete Hopfield net

Scilab code Solution 5.5 5

1 // D i s c r e t e Hop f i e l d net
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 x=[1 1 1 0];

8 tx=[0 0 1 0];

9 w1=(2*x’-1);

10 w2=(2*x-1);

11 w=w1*w2;

12

13 for i=1:4

14 w(i,i)=0;

15 end

16 con =1;

17 y=[0 0 1 0];

18 while con

19 up=[4 2 1 3];

20 for i=1:4

21 yin(up(i))=tx(up(i))+y*w(1:4,up(i));
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22 if yin(up(i)) >0

23 y(up(i))=1;

24 end

25 end

26 if y==x

27 disp( ’ Convergence has been ob ta i n ed ’ );
28 disp( ’ The Converged Ouput ’ );
29 disp(y);

30 con =0;

31 end

32 end

33

34 //Output
35 // Convergence has been ob ta i n ed
36 //
37 // The Converged Ouput
38 //
39 // 1 . 1 . 1 . 0 .
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Experiment: 6

Kohonen self organizing maps

Scilab code Solution 6.6 6

1 //Kohonen s e l f o r g a n i z i n g maps
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 x=[1 1 0 0;0 0 0 1;1 0 0 0;0 0 1 1];

8 alpha =0.6;

9

10 // i n i t i a l we ight matr ix
11 w=rand (4,2);

12 disp( ’ I n i t i a l we ight matr ix ’ );
13 disp(w);

14 con =1;

15 epoch =0;

16 while con

17 for i=1:4

18 for j=1:2

19 D(j)=0;

20 for k=1:4

21 D(j)=D(j)+(w(k,j)-x(i,k))^2;
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22 end

23 end

24 for j=1:2

25 if D(j)==min(D)

26 J=j;

27 end

28 end

29 w(:,J)=w(:,J)+alpha*(x(i,:) ’-w(:,J));

30 end

31 alpha =0.5* alpha;

32 epoch=epoch +1;

33 if epoch ==300

34 con =0;

35 end

36 end

37 disp( ’ Weight Matr ix a f t e r 300 epoch ’ );
38 disp(w);

39

40 //Output
41 // I n i t i a l we ight matr ix
42 //
43 // 0 . 2113249 0 . 6653811
44 // 0 . 7560439 0 . 6283918
45 // 0 . 0002211 0 . 8497452
46 // 0 . 3303271 0 . 685731
47 //
48 // Weight Matr ix a f t e r 300 epoch
49 //
50 // 0 . 9671633 0 . 0277033
51 // 0 . 4283588 0 . 0261632
52 // 0 . 0000092 0 . 5968633
53 // 0 . 0137532 0 . 9869153
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Experiment: 7

Learning Vector Quantisation

Scilab code Solution 7.7 7

1 // Learn ing Vector Quan t i z a t i on
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 s=[1 1 0 0;0 0 0 1;0 0 1 1;1 0 0 0;0 1 1 0];

8 st=[1 2 2 1 2];

9 alpha =0.6;

10

11 // i n i t i a l we ight matr ix f i r s t two v e c t o r s o f i nput
p a t t e r n s

12 w=[s(1,:);s(2,:)]’;

13 disp( ’ I n i t i a l we ight matr ix ’ );
14 disp(w);

15

16 // s e t r ema in ing as input v e c t o r
17 x=[s(3,:);s(4,:);s(5,:)];

18 t=[st(3);st(4);st(5)];

19 con =1;

20 epoch =0;
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21 while con

22 for i=1:3

23 for j=1:2

24 D(j)=0;

25 for k=1:4

26 D(j)=D(j)+(w(k,j)-x(i,k))^2;

27 end

28 end

29 for j=1:2

30 if D(j)==min(D)

31 J=j;

32 end

33 end

34 if J==t(i)

35 w(:,J)=w(:,J)+alpha*(x(i,:) ’-w(:,J));

36 else

37 w(:,J)=w(:,J)-alpha*(x(i,:) ’-w(:,J));

38 end

39 end

40 alpha =0.5* alpha;

41 epoch=epoch +1;

42 if epoch ==100

43 con =0;

44 end

45 end

46 disp( ’ Weight Matr ix a f t e r 100 epochs ’ );
47 disp(w);

48

49 //Output
50 // I n i t i a l we ight matr ix
51 //
52 // 1 . 0 .
53 // 1 . 0 .
54 // 0 . 0 .
55 // 0 . 1 .
56 //
57 // Weight Matr ix a f t e r 100 epochs
58 //
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59 // 1 . 0 .
60 // 0 . 2040471 0 . 561484
61 // 0 . 0 . 9 583648
62 // 0 . 0 . 4 38516
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Experiment: 8

Full Counter Propagation
Network for given input pair

Scilab code Solution 8.8 8

1 // Fu l l c oun t e r p r opaga t i on network f o r g i v en input
p a i r

2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // s e t i n i t i a l we i gh t s
8 v=[0.6 0.2;0.6 0.2;0.2 0.6; 0.2 0.6];

9 w=[0.4 0.3;0.4 0.3];

10 x=[0 1 1 0];

11 y=[1 0];

12 alpha =0.3;

13 for j=1:2

14 D(j)=0;

15 for i=1:4

16 D(j)=D(j)+(x(i)-v(i,j))^2;

17 end

18 for k=1:2
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19 D(j)=D(j)+(y(k)-w(k,j))^2;

20 end

21 end

22 for j=1:2

23 if D(j)==min(D)

24 J=j;

25 end

26 end

27 disp( ’ A f t e r one s t e p the we ight matr ix a r e ’ );
28 v(:,J)=v(:,J)+alpha*(x’-v(:,J))

29 w(:,J)=w(:,J)+alpha*(y’-w(:,J))

30 disp( ’ v ’ )
31 disp(v)

32 disp( ’w ’ )
33 disp(w)

34

35 //Output
36 //
37 // A f t e r one s t ep the we ight matr ix a r e
38 //
39 // v
40 //
41 // 0 . 4 2 0 . 2
42 // 0 . 7 2 0 . 2
43 // 0 . 4 4 0 . 6
44 // 0 . 1 4 0 . 6
45 //
46 // w
47 //
48 // 0 . 5 8 0 . 3
49 // 0 . 2 8 0 . 3
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Experiment: 9

ART1 Neural Net

Scilab code Solution 9.9 9

1 //ART1 Neura l Net
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 b=[0.57 0.0 0.3;0.0 0.0 0.3;0.0 0.57 0.3;0.0 0.47

0.3];

8 t=[1 1 0 0;1 0 0 1;1 1 1 1];

9 vp=0.4;

10 L=2;

11 x=[1 0 1 1];

12 s=x;

13 ns=sum(s);

14 y=x*b;

15 con =1;

16 while con

17 for i=1:3

18 if y(i)==max(y)

19 J=i;

20 end
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21 end

22 x=s.*t(J,:);

23 nx=sum(x);

24 if nx/ns >= vp

25 b(:,J)=L*x(:)/(L-1+nx);

26 t(J,:)=x(1,:);

27 con =0;

28 else

29 y(J)=-1;

30 con =1;

31 end

32 if y+1==0

33 con =0;

34 end

35 end

36 disp( ’Top Down Weights ’ );
37 disp(t);

38 disp( ’ Bottom up Weights ’ );
39 disp(b);

40

41 //Output
42 // Top Down Weights
43 //
44 // 1 . 1 . 0 . 0 .
45 // 1 . 0 . 0 . 1 .
46 // 1 . 1 . 1 . 1 .
47 //
48 // Bottom up Weights
49 //
50 // 0 . 5 7 0 . 6666667 0 . 3
51 // 0 . 0 . 0 . 3
52 // 0 . 0 . 0 . 3
53 // 0 . 0 . 6666667 0 . 3
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Experiment: 10

MLP

Scilab code Solution 10.10 10

1 //MLP Algor i thm and imp l ementa t i on
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 deff( ’ y=f ( x ) ’ , ’ y=1/(1+exp(−x ) ) ’ )
8 Wih =[0.1 , -0.3;0.3 ,0.4];

9 Who =[0.4;0.5]

10 i=[0.2 ,0.6];

11 t=0.7;

12 a=10;

13 for k=1:3

14 printf( ’ \n\n\ nAf t e r I t e r a t i o n %i : \ n\n ’ ,k)
15 disp(Wih , ’Wih = ’ )
16 disp(Who , ’Who = ’ )
17 a1=i*Wih;

18 disp(a1, ’ a = ’ )
19 h=[f(a1(1)),f(a1(2))]

20 disp(h, ’ h = ’ )
21 b1=h*Who
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22 disp(b1, ’ b1 = ’ )
23 o=f(b1)

24 disp(o, ’ o = ’ )
25 d=o*(1-o)*(t-o)

26 disp(d, ’ d = ’ )
27 for j=1:2

28 e(1,j)=h(j)*(1-h(j))*d*Who(j)

29 end

30 disp(e, ’ e = ’ )
31 dWho=a*h’*d;

32 disp(dWho , ’dWho = ’ )
33 Who=Who+dWho;

34 dWih=a*i’*e;

35 disp(dWih , ’ dWih = ’ )
36 Wih=Wih+dWih;

37 end

38

39 //Output
40 // A f t e r I t e r a t i o n 1 :
41 //
42 //
43 // Wih =
44 //
45 // 0 . 1 −0.3
46 // 0 . 3 0 . 4
47 //
48 // Who =
49 //
50 // 0 . 4
51 // 0 . 5
52 //
53 // a =
54 //
55 // 0 . 2 0 . 1 8
56 //
57 // h =
58 //
59 // 0 . 549834 0 . 5448789
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60 //
61 // b1 =
62 //
63 // 0 . 492373
64 //
65 // o =
66 //
67 // 0 . 6206653
68 //
69 // d =
70 //
71 // 0 . 0186786
72 //
73 // e =
74 //
75 // 0 . 0018493 0 . 002316
76 //
77 // dWho =
78 //
79 // 0 . 102701
80 // 0 . 1017755
81 //
82 // dWih =
83 //
84 // 0 . 0036986 0 . 004632
85 // 0 . 0110958 0 . 0138961
86 //
87 //
88 //
89 // A f t e r I t e r a t i o n 2 :
90 //
91 //
92 // Wih =
93 //
94 // 0 . 1036986 −0.295368
95 // 0 . 3110958 0 . 4138961
96 //
97 // Who =

28



98 //
99 // 0 . 502701

100 // 0 . 6017755
101 //
102 // a =
103 //
104 // 0 . 2073972 0 . 189264
105 //
106 // h =
107 //
108 // 0 . 5516642 0 . 5471753
109 //
110 // b1 =
111 //
112 // 0 . 6065989
113 //
114 // o =
115 //
116 // 0 . 6471646
117 //
118 // d =
119 //
120 // 0 . 0120646
121 //
122 // e =
123 //
124 // 0 . 0 015 0 . 0017989
125 //
126 // dWho =
127 //
128 // 0 . 066556
129 // 0 . 0660144
130 //
131 // dWih =
132 //
133 // 0 . 0030001 0 . 0035978
134 // 0 . 0090002 0 . 0107933
135 //
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136 //
137 //
138 // A f t e r I t e r a t i o n 3 :
139 //
140 //
141 // Wih =
142 //
143 // 0 . 1066987 −0.2917702
144 // 0 . 320096 0 . 4246894
145 //
146 // Who =
147 //
148 // 0 . 569257
149 // 0 . 6677899
150 //
151 // a =
152 //
153 // 0 . 2133973 0 . 1964596
154 //
155 // h =
156 //
157 // 0 . 5531478 0 . 5489575
158 //
159 // b1 =
160 //
161 // 0 . 6814715
162 //
163 // o =
164 //
165 // 0 . 6640671
166 //
167 // d =
168 //
169 // 0 . 008016
170 //
171 // e =
172 //
173 // 0 . 0011279 0 . 0013254
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174 //
175 // dWho =
176 //
177 // 0 . 0443403
178 // 0 . 0440044
179 //
180 // dWih =
181 //
182 // 0 . 0022558 0 . 0026508
183 // 0 . 0067674 0 . 0079525
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