
Scilab Manual for
Neural Networks

by Dr G V Maha Lakshmi
Electronics Engineering

Sreenidhi Institute Of Science And
Technology1

Solutions provided by
Dr G V Maha Lakshmi
Electronics Engineering

Sreenidhi Institute Of Science And Technology

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Generate AND NOT function using McCulloch-Pitts neural
net 4

2 McCulloch-Pitts Net for XOR function 7

3 Hebb Net to classify two dimensional input patterns 11

4 Hetro associative neural net 13

5 Discrete Hopfield net 15

6 Kohonen self organizing maps 17

7 Learning Vector Quantisation 19

8 Full Counter Propagation Network for given input pair 22

9 ART1 Neural Net 24

10 MLP 26

2

List of Experiments

Solution 1.1 1 . 4
Solution 2.2 2 . 7
Solution 3.3 3 . 11
Solution 4.4 4 . 13
Solution 5.5 5 . 15
Solution 6.6 6 . 17
Solution 7.7 7 . 19
Solution 8.8 8 . 22
Solution 9.9 9 . 24
Solution 10.10 10 . 26

3

Experiment: 1

Generate AND NOT function
using McCulloch-Pitts neural
net

Scilab code Solution 1.1 1

1 // Generate AND NOT f un c t i o n u s i n g McCulloch−P i t t s
n eu r a l net

2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // Generate we i gh t s and t h r e s h o l d va lu e
8 disp(’ Enter the we i gh t s ’);
9 w1=input(’ Weight w1= ’);
10 w2=input(’ Weight w2= ’);
11 disp(’ Enter Thresho ld Value ’);
12 theta=input(’ t h e t a= ’);
13 y=[0 0 0 0];

14 x1=[0 0 1 1];

15 x2=[0 1 0 1];

16 z=[0 0 1 0];

4

17 con =1;

18 while con

19 zin=x1*w1+x2*w2;

20 for i=1:4

21 if zin(i)>=theta

22 y(i)=1;

23 else

24 y(i)=0;

25 end

26 end

27 disp(’ Output o f Net ’);
28 disp(y);

29 if y==z

30 con =0;

31 else

32 disp(’ Net i s not l e a r n i n g e n t e r ano the r s e t o f
we i gh t s and Thresho ld va lu e ’);

33 w1=input(’ we ight w1= ’);
34 w2=input(’ we ight w2= ’);
35 theta=input(’ t h e t a= ’);
36 end

37 end

38 disp(’ Mccul loch−P i t t s Net f o r ANDNOT f un c t i o n ’);
39 disp(’ Weights o f Neuron ’);
40 disp(w1);

41 disp(w2);

42 disp(’ Thre sho ld va l u e ’);
43 disp(theta);

44

45 //Truth Table
46 //X1 X2 Y
47 // 0 0 0
48 // 0 1 0
49 // 1 0 1
50 // 1 1 0
51

52 //Output
53 // Enter the we i gh t s

5

54 //Weight w1=1
55 //Weight w2=1
56 //
57 // Enter Thresho ld Value
58 // th e t a =0.1
59 //
60 // Output o f Net
61 //
62 // 0 . 1 . 1 . 1 .
63 //
64 // Net i s not l e a r n i n g e n t e r ano the r s e t o f we i gh t s

and Thresho ld v
65 // a l u e
66 // we ight w1=1
67 // we ight w2=−1
68 // th e t a=1
69 //
70 // Output o f Net
71 //
72 // 0 . 0 . 1 . 0 .
73 //
74 // Mccul loch−P i t t s Net f o r ANDNOT f un c t i o n
75 //
76 // Weights o f Neuron
77 //
78 // 1 .
79 //
80 // − 1 .
81 //
82 // Thresho ld va lu e
83 //
84 // 1 .

6

Experiment: 2

McCulloch-Pitts Net for XOR
function

Scilab code Solution 2.2 2

1 //McCulloch−P i t t s f o r XOR f un c t i o n
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // Get t ing we i gh t s and t h r e s h o l d va lu e
8 disp(’ Enter we i gh t s ’);
9 w11=input(’ Weight w11= ’);

10 w12=input(’ we ight w12= ’);
11 w21=input(’ Weight w21= ’);
12 w22=input(’ we ight w22= ’);
13 v1=input(’ we ight v1= ’);
14 v2=input(’ we ight v2= ’);
15 disp(’ Enter Thresho ld Value ’);
16 theta=input(’ t h e t a= ’);
17 x1=[0 0 1 1];

18 x2=[0 1 0 1];

19 z=[0;1;1;0];

7

20 con =1;

21 while con

22 zin1=x1*w11+x2*w21;

23 zin2=x1*w21+x2*w22;

24 for i=1:4

25 if zin1(i)>=theta

26 y1(i)=1;

27 else

28 y1(i)=0;

29 end

30 if zin2(i)>=theta

31 y2(i)=1;

32 else

33 y2(i)=0;

34 end

35 end

36 yin=y1*v1+y2*v2;

37 for i=1:4

38 if yin(i)>=theta;

39 y(i)=1;

40 else

41 y(i)=0;

42 end

43 end

44 disp(’ Output o f Net ’);
45 disp(y);

46 if y == z

47 con =0;

48 else

49 disp(’ Net i s not l e a r n i n g e n t e r ano the r s e t o f
we i gh t s and Thresho ld va lu e ’);

50 w11=input(’ Weight w11= ’);
51 w12=input(’ we ight w12= ’);
52 w21=input(’ Weight w21= ’);
53 w22=input(’ we ight w22= ’);
54 v1=input(’ we ight v1= ’);
55 v2=input(’ we ight v2= ’);
56 theta=input(’ t h e t a= ’);

8

57 end

58 end

59 disp(’ McCulloch−P i t t s Net f o r XOR f un c t i o n ’);
60 disp(’ Weights o f Neuron Z1 ’);
61 disp(w11);

62 disp(w21);

63 disp(’ we i gh t s o f Neuron Z2 ’);
64 disp(w12);

65 disp(w22);

66 disp(’ we i gh t s o f Neuron Y ’);
67 disp(v1);

68 disp(v2);

69 disp(’ Thre sho ld va l u e ’);
70 disp(theta);

71

72 //Truth Table
73 //X1 X2 Y
74 // 0 0 0
75 // 0 1 1
76 // 1 0 1
77 // 1 1 0
78

79 //Output
80

81 // Enter we i gh t s
82 //Weight w11=1
83 // we ight w12=−1
84 //Weight w21=−1
85 // we ight w22=1
86 // we ight v1=1
87 // we ight v2=1
88 //
89 // Enter Thresho ld Value
90 // th e t a=1
91 //
92 // Output o f Net
93 //
94 // 0 .

9

95 // 1 .
96 // 1 .
97 // 0 .
98 //
99 // McCulloch−P i t t s Net f o r XOR f un c t i o n

100 //
101 // Weights o f Neuron Z1
102 //
103 // 1 .
104 //
105 // − 1 .
106 //
107 // we i gh t s o f Neuron Z2
108 //
109 // − 1 .
110 //
111 // 1 .
112 //
113 // we i gh t s o f Neuron Y
114 //
115 // 1 .
116 //
117 // 1 .
118 //
119 // Thresho ld va lu e
120 //
121 // 1 .

10

Experiment: 3

Hebb Net to classify two
dimensional input patterns

Scilab code Solution 3.3 3

1 //Hebb Net to c l a s s i f y two d imen s i ona l i nput
p a t t e r n s

2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // Input Pa t t e rn s
8 E=[1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 1 1 1];

9 F=[1 1 1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 -1

-1];

10 x(1 ,1:20)=E;

11 x(2 ,1:20)=F;

12 w(1:20) =0;

13 w=w’

14 t=[1 -1];

15 b=0;

16 for i=1:2

17 w=w+x(i ,1:20)*t(i);

11

18 b=b+t(i);

19 end

20 disp(’ Weight matr ix ’);
21 disp(w);

22 disp(’ B ia s ’);
23 disp(b);

24

25 //Output
26 //
27 // Weight matr ix
28 //
29 //
30 // column 1 to 18
31 //
32 // 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

0 . 0 . 0 . 0 . 0 . / / 0 . 0 . 2 .
33 //
34 // column 19 to 20
35 //
36 // 2 . 2 .
37 //
38 // Bias
39 //
40 // 0 .

12

Experiment: 4

Hetro associative neural net

Scilab code Solution 4.4 4

1 // Hetro a s s o c i a t i v e n eu r a l net
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 x=[1 1 0 0;1 0 1 0;1 1 1 0;0 1 1 0];

8 t=[1 0;1 0;0 1;0 1];

9 w=zeros (4,2);

10 for i=1:4

11 w=w+x(i ,1:4) ’*t(i ,1:2);

12 end

13 disp(’ Weight matr ix ’);
14 disp(w);

15

16

17 // Auo t a s s o c i a t i v e net to s t o r e the v e c t o r
18

19 x=[1 1 -1 -1];

20 xv=[1;1; -1; -1];

21 w=zeros (4,4);

13

22 w=x’*x;

23 yin=x*w;

24 for i=1:4

25 if yin(i)>0

26 y(i)=1;

27 else

28 y(i)=-1;

29 end

30 end

31 disp(’ Weight matr ix ’);
32 disp(w);

33 if xv==y

34 disp(’ The v e c t o r i s a Known Vector ’);
35 else

36 disp(’ The v e c t o r i s an Unknown Vector ’);
37 end

38

39 //Output
40 // Weight matr ix
41 //
42 // 2 . 1 .
43 // 1 . 2 .
44 // 1 . 2 .
45 // 0 . 0 .
46 //
47 // Weight matr ix
48 //
49 // 1 . 1 . −1. −1.
50 // 1 . 1 . −1. −1.
51 // −1. −1. 1 . 1 .
52 // −1. −1. 1 . 1 .
53 //
54 // The v e c t o r i s a Known Vector

14

Experiment: 5

Discrete Hopfield net

Scilab code Solution 5.5 5

1 // D i s c r e t e Hop f i e l d net
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 x=[1 1 1 0];

8 tx=[0 0 1 0];

9 w1=(2*x’-1);

10 w2=(2*x-1);

11 w=w1*w2;

12

13 for i=1:4

14 w(i,i)=0;

15 end

16 con =1;

17 y=[0 0 1 0];

18 while con

19 up=[4 2 1 3];

20 for i=1:4

21 yin(up(i))=tx(up(i))+y*w(1:4,up(i));

15

22 if yin(up(i)) >0

23 y(up(i))=1;

24 end

25 end

26 if y==x

27 disp(’ Convergence has been ob ta i n ed ’);
28 disp(’ The Converged Ouput ’);
29 disp(y);

30 con =0;

31 end

32 end

33

34 //Output
35 // Convergence has been ob ta i n ed
36 //
37 // The Converged Ouput
38 //
39 // 1 . 1 . 1 . 0 .

16

Experiment: 6

Kohonen self organizing maps

Scilab code Solution 6.6 6

1 //Kohonen s e l f o r g a n i z i n g maps
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 x=[1 1 0 0;0 0 0 1;1 0 0 0;0 0 1 1];

8 alpha =0.6;

9

10 // i n i t i a l we ight matr ix
11 w=rand (4,2);

12 disp(’ I n i t i a l we ight matr ix ’);
13 disp(w);

14 con =1;

15 epoch =0;

16 while con

17 for i=1:4

18 for j=1:2

19 D(j)=0;

20 for k=1:4

21 D(j)=D(j)+(w(k,j)-x(i,k))^2;

17

22 end

23 end

24 for j=1:2

25 if D(j)==min(D)

26 J=j;

27 end

28 end

29 w(:,J)=w(:,J)+alpha*(x(i,:) ’-w(:,J));

30 end

31 alpha =0.5* alpha;

32 epoch=epoch +1;

33 if epoch ==300

34 con =0;

35 end

36 end

37 disp(’ Weight Matr ix a f t e r 300 epoch ’);
38 disp(w);

39

40 //Output
41 // I n i t i a l we ight matr ix
42 //
43 // 0 . 2113249 0 . 6653811
44 // 0 . 7560439 0 . 6283918
45 // 0 . 0002211 0 . 8497452
46 // 0 . 3303271 0 . 685731
47 //
48 // Weight Matr ix a f t e r 300 epoch
49 //
50 // 0 . 9671633 0 . 0277033
51 // 0 . 4283588 0 . 0261632
52 // 0 . 0000092 0 . 5968633
53 // 0 . 0137532 0 . 9869153

18

Experiment: 7

Learning Vector Quantisation

Scilab code Solution 7.7 7

1 // Learn ing Vector Quan t i z a t i on
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 s=[1 1 0 0;0 0 0 1;0 0 1 1;1 0 0 0;0 1 1 0];

8 st=[1 2 2 1 2];

9 alpha =0.6;

10

11 // i n i t i a l we ight matr ix f i r s t two v e c t o r s o f i nput
p a t t e r n s

12 w=[s(1,:);s(2,:)]’;

13 disp(’ I n i t i a l we ight matr ix ’);
14 disp(w);

15

16 // s e t r ema in ing as input v e c t o r
17 x=[s(3,:);s(4,:);s(5,:)];

18 t=[st(3);st(4);st(5)];

19 con =1;

20 epoch =0;

19

21 while con

22 for i=1:3

23 for j=1:2

24 D(j)=0;

25 for k=1:4

26 D(j)=D(j)+(w(k,j)-x(i,k))^2;

27 end

28 end

29 for j=1:2

30 if D(j)==min(D)

31 J=j;

32 end

33 end

34 if J==t(i)

35 w(:,J)=w(:,J)+alpha*(x(i,:) ’-w(:,J));

36 else

37 w(:,J)=w(:,J)-alpha*(x(i,:) ’-w(:,J));

38 end

39 end

40 alpha =0.5* alpha;

41 epoch=epoch +1;

42 if epoch ==100

43 con =0;

44 end

45 end

46 disp(’ Weight Matr ix a f t e r 100 epochs ’);
47 disp(w);

48

49 //Output
50 // I n i t i a l we ight matr ix
51 //
52 // 1 . 0 .
53 // 1 . 0 .
54 // 0 . 0 .
55 // 0 . 1 .
56 //
57 // Weight Matr ix a f t e r 100 epochs
58 //

20

59 // 1 . 0 .
60 // 0 . 2040471 0 . 561484
61 // 0 . 0 . 9 583648
62 // 0 . 0 . 4 38516

21

Experiment: 8

Full Counter Propagation
Network for given input pair

Scilab code Solution 8.8 8

1 // Fu l l c oun t e r p r opaga t i on network f o r g i v en input
p a i r

2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 // s e t i n i t i a l we i gh t s
8 v=[0.6 0.2;0.6 0.2;0.2 0.6; 0.2 0.6];

9 w=[0.4 0.3;0.4 0.3];

10 x=[0 1 1 0];

11 y=[1 0];

12 alpha =0.3;

13 for j=1:2

14 D(j)=0;

15 for i=1:4

16 D(j)=D(j)+(x(i)-v(i,j))^2;

17 end

18 for k=1:2

22

19 D(j)=D(j)+(y(k)-w(k,j))^2;

20 end

21 end

22 for j=1:2

23 if D(j)==min(D)

24 J=j;

25 end

26 end

27 disp(’ A f t e r one s t e p the we ight matr ix a r e ’);
28 v(:,J)=v(:,J)+alpha*(x’-v(:,J))

29 w(:,J)=w(:,J)+alpha*(y’-w(:,J))

30 disp(’ v ’)
31 disp(v)

32 disp(’w ’)
33 disp(w)

34

35 //Output
36 //
37 // A f t e r one s t ep the we ight matr ix a r e
38 //
39 // v
40 //
41 // 0 . 4 2 0 . 2
42 // 0 . 7 2 0 . 2
43 // 0 . 4 4 0 . 6
44 // 0 . 1 4 0 . 6
45 //
46 // w
47 //
48 // 0 . 5 8 0 . 3
49 // 0 . 2 8 0 . 3

23

Experiment: 9

ART1 Neural Net

Scilab code Solution 9.9 9

1 //ART1 Neura l Net
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 b=[0.57 0.0 0.3;0.0 0.0 0.3;0.0 0.57 0.3;0.0 0.47

0.3];

8 t=[1 1 0 0;1 0 0 1;1 1 1 1];

9 vp=0.4;

10 L=2;

11 x=[1 0 1 1];

12 s=x;

13 ns=sum(s);

14 y=x*b;

15 con =1;

16 while con

17 for i=1:3

18 if y(i)==max(y)

19 J=i;

20 end

24

21 end

22 x=s.*t(J,:);

23 nx=sum(x);

24 if nx/ns >= vp

25 b(:,J)=L*x(:)/(L-1+nx);

26 t(J,:)=x(1,:);

27 con =0;

28 else

29 y(J)=-1;

30 con =1;

31 end

32 if y+1==0

33 con =0;

34 end

35 end

36 disp(’Top Down Weights ’);
37 disp(t);

38 disp(’ Bottom up Weights ’);
39 disp(b);

40

41 //Output
42 // Top Down Weights
43 //
44 // 1 . 1 . 0 . 0 .
45 // 1 . 0 . 0 . 1 .
46 // 1 . 1 . 1 . 1 .
47 //
48 // Bottom up Weights
49 //
50 // 0 . 5 7 0 . 6666667 0 . 3
51 // 0 . 0 . 0 . 3
52 // 0 . 0 . 0 . 3
53 // 0 . 0 . 6666667 0 . 3

25

Experiment: 10

MLP

Scilab code Solution 10.10 10

1 //MLP Algor i thm and imp l ementa t i on
2 //Windows 10
3 // S c i l a b 5 . 4 . 1
4 clear;

5 clc;

6

7 deff(’ y=f (x) ’ , ’ y=1/(1+exp(−x)) ’)
8 Wih =[0.1 , -0.3;0.3 ,0.4];

9 Who =[0.4;0.5]

10 i=[0.2 ,0.6];

11 t=0.7;

12 a=10;

13 for k=1:3

14 printf(’ \n\n\ nAf t e r I t e r a t i o n %i : \ n\n ’ ,k)
15 disp(Wih , ’Wih = ’)
16 disp(Who , ’Who = ’)
17 a1=i*Wih;

18 disp(a1, ’ a = ’)
19 h=[f(a1(1)),f(a1(2))]

20 disp(h, ’ h = ’)
21 b1=h*Who

26

22 disp(b1, ’ b1 = ’)
23 o=f(b1)

24 disp(o, ’ o = ’)
25 d=o*(1-o)*(t-o)

26 disp(d, ’ d = ’)
27 for j=1:2

28 e(1,j)=h(j)*(1-h(j))*d*Who(j)

29 end

30 disp(e, ’ e = ’)
31 dWho=a*h’*d;

32 disp(dWho , ’dWho = ’)
33 Who=Who+dWho;

34 dWih=a*i’*e;

35 disp(dWih , ’ dWih = ’)
36 Wih=Wih+dWih;

37 end

38

39 //Output
40 // A f t e r I t e r a t i o n 1 :
41 //
42 //
43 // Wih =
44 //
45 // 0 . 1 −0.3
46 // 0 . 3 0 . 4
47 //
48 // Who =
49 //
50 // 0 . 4
51 // 0 . 5
52 //
53 // a =
54 //
55 // 0 . 2 0 . 1 8
56 //
57 // h =
58 //
59 // 0 . 549834 0 . 5448789

27

60 //
61 // b1 =
62 //
63 // 0 . 492373
64 //
65 // o =
66 //
67 // 0 . 6206653
68 //
69 // d =
70 //
71 // 0 . 0186786
72 //
73 // e =
74 //
75 // 0 . 0018493 0 . 002316
76 //
77 // dWho =
78 //
79 // 0 . 102701
80 // 0 . 1017755
81 //
82 // dWih =
83 //
84 // 0 . 0036986 0 . 004632
85 // 0 . 0110958 0 . 0138961
86 //
87 //
88 //
89 // A f t e r I t e r a t i o n 2 :
90 //
91 //
92 // Wih =
93 //
94 // 0 . 1036986 −0.295368
95 // 0 . 3110958 0 . 4138961
96 //
97 // Who =

28

98 //
99 // 0 . 502701

100 // 0 . 6017755
101 //
102 // a =
103 //
104 // 0 . 2073972 0 . 189264
105 //
106 // h =
107 //
108 // 0 . 5516642 0 . 5471753
109 //
110 // b1 =
111 //
112 // 0 . 6065989
113 //
114 // o =
115 //
116 // 0 . 6471646
117 //
118 // d =
119 //
120 // 0 . 0120646
121 //
122 // e =
123 //
124 // 0 . 0 015 0 . 0017989
125 //
126 // dWho =
127 //
128 // 0 . 066556
129 // 0 . 0660144
130 //
131 // dWih =
132 //
133 // 0 . 0030001 0 . 0035978
134 // 0 . 0090002 0 . 0107933
135 //

29

136 //
137 //
138 // A f t e r I t e r a t i o n 3 :
139 //
140 //
141 // Wih =
142 //
143 // 0 . 1066987 −0.2917702
144 // 0 . 320096 0 . 4246894
145 //
146 // Who =
147 //
148 // 0 . 569257
149 // 0 . 6677899
150 //
151 // a =
152 //
153 // 0 . 2133973 0 . 1964596
154 //
155 // h =
156 //
157 // 0 . 5531478 0 . 5489575
158 //
159 // b1 =
160 //
161 // 0 . 6814715
162 //
163 // o =
164 //
165 // 0 . 6640671
166 //
167 // d =
168 //
169 // 0 . 008016
170 //
171 // e =
172 //
173 // 0 . 0011279 0 . 0013254

30

174 //
175 // dWho =
176 //
177 // 0 . 0443403
178 // 0 . 0440044
179 //
180 // dWih =
181 //
182 // 0 . 0022558 0 . 0026508
183 // 0 . 0067674 0 . 0079525

31

	
	Generate AND NOT function using McCulloch-Pitts neural net
	McCulloch-Pitts Net for XOR function
	Hebb Net to classify two dimensional input patterns
	Hetro associative neural net
	Discrete Hopfield net
	Kohonen self organizing maps
	Learning Vector Quantisation
	Full Counter Propagation Network for given input pair
	ART1 Neural Net
	MLP

