Scilab Manual for
Neural Networks
by Dr G V Maha Lakshmi
Electronics Engineering
Sreenidhi Institute Of Science And
Technology?

Solutions provided by
Dr G V Maha Lakshmi
Electronics Engineering
Sreenidhi Institute Of Science And Technology

February 12, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

8

9

Generate AND NOT function using McCulloch-Pitts neural
net

McCulloch-Pitts Net for XOR function

Hebb Net to classify two dimensional input patterns
Hetro associative neural net

Discrete Hopfield net

Kohonen self organizing maps

Learning Vector Quantisation

Full Counter Propagation Network for given input pair

ART1 Neural Net

10 MLP

11

13

15

17

19

22

24

26

List of Experiments

Solution 1.1 1
Solution 2.2 2
Solution 3.3 5
Solution 4.4 4 e
Solution 5.5 D
Solution 6.6 G . .
Solution 7.7 T
Solution 8.8 R
Solution 9.9 O s
Solution 10.10 10

11
13
15
17
19
22
24
26

—

© 00 J O Ut i W N

R T T
S U i W N = O

Experiment: 1

Generate AND NOT function
using McCulloch-Pitts neural
net

Scilab code Solution 1.1 1

// Generate AND NOT function wusing McCulloch—Pitts
neural net

// Windows 10

//Scilab 5.4.1

clear;

clc;

//Generate weights and threshold value
disp(’Enter the weights’);
wl=input (" Weight wl=");
w2=input ("' Weight w2=");

disp(’Enter Threshold Value’);
theta=input (’theta=");

y=[0 0 0 0];

x1=[0 0 1 1];

x2=[0 1 0 1];

z=[0 0 1 0];

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

con=1;
while con
zin=x1*xwl+x2*xw2;
for i=1:4
if zin(i)>=theta
y(i)=1;
else
y (i) =0;
end
end
disp (’Output of Net’);
disp(y);
if y==z
con=0;
else
disp(’Net is not learning enter another set of
weights and Threshold value’);
wl=input ('weight wl=");
w2=input ("weight w2=");
theta=input (’theta=");
end
end
disp(’Mcculloch—Pitts Net for ANDNOT function ') ;
disp (' Weights of Neuron’);
disp(wl);
disp(w2);
disp(’Threshold value’);
disp(theta);

//Truth Table

//X1 X2 Y
/J0 0 0
/0 1 0
/10 1
//1 1 0
// Output

//Enter the weights

54
55
56
o7
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

// Weight wl=1
// Weight w2=1

//
//

Enter Threshold Value

//theta=0.1

//
//

//
//

Output of Net

0. 1. 1. 1.

Net is not learning enter another set of weights
and Threshold v

alue

//weight wl=1
//weight w2=-1

//theta=1

//

// Output of Net

//

/) 0. 0. 1. 0.
//

// Mcculloch—Pitts Net for ANDNOT function
//

// Weights of Neuron

//

// L.

//

/] = 1.

//

// Threshold value

//

// 1.

© 00 N O U b W N

el e T e T e S e e S e e
© 00 J O O = W N —= O

Experiment: 2

McCulloch-Pitts Net for XOR

function

Scilab code Solution 2.2 2

//McCulloch—Pitts for XOR function
//Windows 10

//Scilab 5.4.1

clear;

clc;

//Getting weights and threshold value
disp (' Enter weights’);
will=input ("Weight wll=");
wil2=input ("weight wl2=");
w2l=input ("Weight w21=");
w22=input ("weight w22=");
vi=input ('weight v1=");
v2=input ("weight v2=");
disp(’Enter Threshold Value’);
theta=input (’theta=");

x1=[0 0 1 1];

x2=[0 1 0 1];

z=[0;1;1;0];

20 con=1;
21 while con

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56

zinl
zin?2
for

end

yin=

for

end
disp
disp

=x1*wll+x2*w21;
=x1*xw21+x2*%w22;
i=1:4
if zinl1(i)>=theta
y1(i)=1;
else
y1(i)=0;
end
if zin2 (i) >=theta
y2(i)=1;
else
y2(i)=0;
end

yl*xvli+y2*xv2;
i=1:4
if yin(i)>=theta;
y(i)=1;
else
y(i)=0;
end

(’Output of Net’);
(y);

if y == z

else

con=0;

disp(’Net is not learning enter another
weights and Threshold value’);

will=input ("Weight wll=");

wil2=input ("weight wl2=");
w2l=input (' Weight w2l=");

w22=input ("weight w22=");

vi=input ('weight vl=");

v2=input ("weight v2=");

theta=input (’theta=");

8

set of

o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

end
end

disp ("McCulloch—Pitts Net for XOR function ’);
disp(’Weights of Neuron Z17);

disp(will);
disp (w21);

disp(’weights

disp(w1l2);
disp (w22);

disp(’weights
disp(vl);
disp(v2);

disp(’Threshold value’);
disp (theta);

//Truth Table
//X1 X2 Y

//0 0
//0 1
//1 0
//1 1

// Output

// Enter
// Weight
//weight
// Weight
//weight
//weight
//weight

//
// Enter

//theta=1

//

0

[R S

weights
wll=1
wl2=-—1
w2l=-1
w22=1
vi=1
v2=1

Threshold Value

// Output of Net

//
// 0.

of Neuron Z27);

of Neuron Y');

905 // 1.

9% // 1.
or /0.
08 //

99 // McCulloch—Pitts Net for XOR function

100 //
101 // Weights of Neuron Z1

102 //

103 // 1.

104 //

105 // — 1.

106 //

107 // weights of Neuron Z2
108 //

09 // — 1.

110 //

11 // 1.

12 //

113 // weights of Neuron Y
14 //

115 // 1.

116 //

17 // 1.

118 //

119 // Threshold value

120 //

121 // 1.

10

[u—

© 00 J O U = W N

10
11
12
13
14
15
16
17

Experiment: 3

Hebb Net to classify two
dimensional input patterns

Scilab code Solution 3.3 3

//Hebb Net to classify two dimensional input
patterns

//Windows 10

//Scilab 5.4.1

clear;

clc;

//Input Patterns

E={1 1111 -1 -1 -1

F=[1 1111 -1 -1 -1

-11;

x(1,1:20)=E;

x(2,1:20)=F;

w(1:20)=0;

w=w’

t=[1 -1];

b=0;

for i=1:2
w=w+x(1i,1:20)*xt(1i);

-1 -1 -11111];

11111
11111 -1 -1-11-1 -1

11

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40

end

b=b+t (i) ;

disp(’Weight matrix’);
disp(w);
disp (’Bias) ;
disp(b);

// Output

Weight

Bias

matrix

0.

column 1 to 18

0. 0. 0. 0./

column 19 to 20

12

© 00 J O U i W N

DO N = = b b s e s s e
_ O © 00 J O U i W NN+ O

Experiment: 4

Hetro associative neural net

Scilab code Solution 4.4 4

//Hetro associative neural net
//Windows 10

//Scilab 5.4.1

clear;

clc;

1110;0110];

x=[1 1 0 0;1 O ;
1 1

t=[1 0;1 0;0

w=zeros (4,2);

for i=1:4
w=w+x(i,1:4)’*xt(i,1:2);

10
;0 1

end
disp (’Weight matrix’) ;
disp(w);

//Auotassociative net to store the vector
x=[1 1 -1 -1];

xv=[1;1;-1;-171;
w=zeros (4,4) ;

13

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

W=X’*X;
yin=x*w,
for i=1:4

if yin(i)>0

y(i)=1;
else
y(i)=-1;

end
end
disp(’Weight matrix ’);
disp(w);
if xv==y

disp(’The vector is a Known Vector’);
else

disp(’The vector is an Unknown Vector’);
end
// Output
// Weight matrix
//
// 2 1.
// 1 2.
// 1 2.
// 0 0.
//
// Weight matrix
//
// 1. 1. —-1. -1.
// 1. 1. —-1. -—1.
// —1. —1. 1. 1.
// —=1. —1. 1. 1.
//
// The vector is a Known Vector

14

Experiment: 5

Discrete Hopfield net

Scilab code Solution 5.5 5

//Discrete Hopfield net
//Windows 10

//Scilab 5.4.1

clear;

clc;

x=[1 11 0];
tx=[0 0 1 0];
wl=(2xx’-1);
w2=(2*xx-1) ;
w=wl*w2;

© 00 J O U i W N

— = = =
W N = O

for i=1:4
w(i,i)=0;

—_ =
(G2

end

con=1;

y=[0 0 1 0];

while con

19 up=[4 2 1 3];

20 for i=1:4

21 yin(up(i))=tx(up(i))+y*w(1:4,up(i));

[
co 3 O

15

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// Convergence has been obtained

end
end
if y==x
disp (y);
con=0;
end
end
// Output
//
// The Converged Ouput
//
// 1. 1.

if yin(up(i))>0
y(up(i))=1;

disp(’Convergence has been obtained ’);
disp(’The Converged Ouput’);

1.

0.

16

© 00 J O U i W N

I I e O T e T e T e T e e T o T Y
_ O © 00 J O U i W N = O

Experiment: 6

Kohonen self organizing maps

Scilab code Solution 6.6 6

//Kohonen self organizing maps
//Windows 10

//Scilab 5.4.1

clear;

clc;

x=[1 1 0 0;0 00 1;1 0 0 0;0 0 1 17;
alpha=0.6;

//initial weight matrix
w=rand (4,2) ;
disp(’Initial weight matrix’);
disp(w);
con=1;
epoch=0;
while con
for i=1:4
for j=1:2
D(j)=0;
for k=1:4
D(j)=D(j)+(w(k,j)-x(i,k))"2;

17

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

end
end
for j=1:2
if D(j)==min (D)
J=3;
end
end
w(:,J)=w(:,J)+alpha*x(x(i,:)’-w(:,J));
end
alpha=0.5*alpha;
epoch=epoch+1;
if epoch==300
con=0;
end
end
disp (’Weight Matrix after 300 epoch’);
disp(w);
// Output
// Initial weight matrix
//
// 0.2113249 0.6653811
// 0.7560439 0.6283918
// 0.0002211 0.8497452
// 0.3303271 0.685731
//
// Weight Matrix after 300 epoch
//
// 0.9671633 0.0277033
// 0.4283588 0.0261632
// 0.0000092 0.5968633
// 0.0137532 0.9869153

18

© 00 J O U i W N

—_ =
)

12
13
14
15
16
17
18
19
20

Experiment: 7

Learning Vector Quantisation

Scilab code Solution 7.7 7

s=[1 1 00;000 1;00 1 1;1 00 0;0 1 1 0];

//Learning Vector Quantization

//Windows 10

//Scilab 5.4.1

clear;

clc;

st=[1 2 2 1 2];

alpha=0.6;

//initial weight matrix first two vectors

patterns
w=[s(1,:);s(2,:)]17;

disp(’Initial weight matrix’);

disp(w);

//set remaining as input vector

x=[s(3,:);8(4,:);8(5,:)];
t=[st(3);st(4);st(5)];
con=1;

epoch=0;

19

of

input

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58

while con
for i=1:3
for j=1:2
D(j)=0;
for k=1:4
D(j)=D(j)+(w(k,j)-x(i,k))"2;
end
end
for j=1:2
if D(j)==min(D)
J=3;
end
end
if J==t(i)
w(:,J)=w(:,J)+alpha*x(x(i,:)’-w(:,J));
else
w(:,J)=w(:,J)-alpha*(x(i,:)’-w(:,J));
end
end
alpha=0.b5*alpha;
epoch=epoch+1;
if epoch==100
con=0;
end
end
disp(’Weight Matrix after 100 epochs’);
disp(w);

// Output
// Initial weight matrix

//
//
//
//
//
//
// Weight Matrix after 100 epochs

//

O O = =
— o O O

20

59 //
60 //
61 //
62 //

SO O

.2040471

0.
0.561484

0.9583648

0.438516

21

Experiment: 8

Full Counter Propagation
Network for given input pair

Scilab code Solution 8.8 8

//Full counter propagation network for given input
pair

//Windows 10

//Scilab 5.4.1

clear;

clc;

//set initial weights
v=[0.6 0.2;0.6 0.2;0.2 0.6; 0.2 0.6];
w=[0.4 0.3;0.4 0.3];
x=[0 1 1 0];
y=[1 0];
alpha=0.3;
for j=1:2
D(j)=0;
for i=1:4
D(j)=D(j)+(x(i)-v(i,j)) ~2;
end
for k=1:2

22

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

end
for j=1:2

end

disp(’After one step the weight matrix are’);
v(:,J)=v(:,J)+alpha*(x’-v(:,J))
w(:,J)=w(:,J)+alpha*(y’-w(:,J))

After one step the weight matrix are

D(§)=D(j)+(y (k) -w(k,j)) 2;

end

if D(j)==min (D)

end

J=7;

disp(’v’)
disp (v)
disp(’'w’)
disp (w)
//Output
//

//

//

/]

//

// 0.42
// 0.72
// 0.44
// 0.14
//

/] w

//

// 0.58
// 0.28

o O OO

SO NN

23

Experiment: 9

ART1 Neural Net

Scilab code Solution 9.9 9

//ART1 Neural Net

N O O W N

© 0o

10
11
12
13
14
15
16
17
18
19
20

//Windows 10
//Scilab 5.4
clear;

clc;

b=[0.57 0.0 0.3;0.0 0.0 0.3;0.0 0.57 0.3;0.0 0.47

0.3];

1

t=[1 1 0 0;1 00 1;1 1 1 1];

vp=0.4;

L=2;

x=[1 0 1 1];
S=Xx;
ns=sum(s) ;
y=Xx*b;
con=1;

while con

for i=1:3

if y(i)==max(y)

end

J=1;

24

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

end

x=s.*t(J,:);
nx=sum(x) ;
if nx/ns >= vp

b(:,J)=L*x(:)/(L-1+nx) ;
t(J,:)=x(1,:);

con=0;
else
y(J)=-1;
con=1;
end
if y+1==
con=0;
end
end
disp(’Top Down Weights) ;
disp(t);
disp(’Bottom up Weights) ;
disp(b);
//Output
// Top Down Weights
//
// 1. 1. 0. 0.
// 1. 0. : 1.
// 1. 1. 1. 1.
//
// Bottom up Weights
//
// 0.57 0.6666667 0.3
// 0. 0. 0.3
// 0. 0. 0.3
// 0. 0.6666667 0.3

25

© 00 J O U i W N

DO DD = = = e e e e e
_ O © 00 O U i Wi~ O

Experiment: 10

MLP

Scilab code Solution 10.10 10

//MLP Algorithm and implementation
//Windows 10

//Scilab 5.4.1

clear;

clc;

deff (Cy=f(x)’, 'y=1/(1+exp(—-x)) ")
Wih=[0.1,-0.3;0.3,0.4];
Who=[0.4;0.5]
i=[0.2,0.6];
t=0.7;
a=10;
for k=1:3
printf (’\n\n\nAfter Iteration %i
disp (Wih, "Wih = 7)

disp (Who, "Who =)
al=i*Wih;
disp(al,’a = ")
h=[f(al1(1)),f(al1(2))]
disp(h,’h = 7)
bl=h*xWho

26

An\n’,k)

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59

disp(bl,’bl =7)

o=f(bl)

disp(o,’0o = 7)

d=o*(1-0)*(t-0)

disp(d,’d =")

for j=1:2
e(1,j)=h(j)*(1-h(j))*d*Who(j)

end

disp(e,’e =")

dWho=a*h’*d;

disp (dWho, ’7dWho =")

Who=Who+dWho;

dWih=a*i’*e;

disp(dWih, "dWih =7)

Wih=Wih+dWih;

end

// Output
// After Iteration 1

//

//
// Wik =

/) 0.1 —0.3
/] 0.3 0.4

// Who =

// 0.2 0.18

// 0.549834 0.5448789

27

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

/] bl =

/) 0.492373

// 0.6206653

// 0.0186786

// 0.0018493

// dWho =

/) 0.102701
// 0.1017755

// dWih =
//
// 0.0036986

// 0.0110958

0.002316

0.004632
0.0138961

// After Iteration 2 :

//

//

/] Wih =

//

/) 0.1036986
/) 0.3110958

//
// Who =

—0.295368
0.4138961

28

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

0.502701
0.6017755

0.2073972

0.5516642

bl =

0.6065989

0.6471646

0.0120646

0.0015

dWho =

0.066556
0.0660144

dWih =

0.0030001
0.0090002

0.189264

0.5471753

0.0017989

0.0035978
0.0107933

29

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

//
//

// After Iteration 3

//
//
//
//
//
//

Wih =

0.1066987
0.320096

Who =

bl

=}

069257
6677899

o

0.2133973

0.5531478

0.6814715

0.6640671

0.008016

0.0011279

—0.2917702
0.4246894

0.1964596

0.5489575

0.0013254

30

174
175
176
177
178
179
180
181
182
183

//
//
//
//
//
//
//
//
//
//

dWho =

0.0443403
0.0440044

dWih =

0.0022558
0.0067674

0.0026508
0.0079525

31

	
	Generate AND NOT function using McCulloch-Pitts neural net
	McCulloch-Pitts Net for XOR function
	Hebb Net to classify two dimensional input patterns
	Hetro associative neural net
	Discrete Hopfield net
	Kohonen self organizing maps
	Learning Vector Quantisation
	Full Counter Propagation Network for given input pair
	ART1 Neural Net
	MLP

