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Experiment: 1

Image analysis on 16 X 16
image size

Scilab code Solution 1.1 1

//Image analysis on 16%16 image size
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

//Form an image of dimension 16x16 containing 16
vertical strips

A=[0 1 2 3456 789 10 11 12 13 14 15;

3 10 11 12 13 14 15;

3

01 2 4 56789
01 2 4 56 7 8 9 10 11 12 13 14 15;



Figure 1.1: 1



Figure 1.2: 1



Figure 1.3: 1
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Al=mat2gray (4);

imwrite (A1, "VerticalStrips

//Form a check—board "B”
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containing 16 blocks

a=[0 9;
b=[a a;
c=[b b;
B=[c c;
Bl=mat2gray (B);
imwrite (B1, 'Check—board. jpeg’);

//Form image containing top—left and bottom—right
parts A and top—right & bottom—left

quarter
quarters B.
C=[ A B; B AJ;

9 0];
a al;

b bl;

c cl;

Cl=mat2gray (C);
imwrite (C1, "Quarter.jpeg’);
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.jpeg’);
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15;
15;
15;
15;
15;
15;
15;
15;
15;
15;
15;
15;
1571 ;

of dimension 16x16
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Experiment: 2

Image analysis on 256 X 256
image size

check Appendix AP 1 for dependency:

Cameramanimg. jpg

Scilab code Solution 2.2 2
1 //Image analysis on 256%256 image size

2 //Scilab 5.4.1
3 //Windows 10
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Figure 2.1: 2
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Figure 2.2: 2
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Figure 2.3: 2
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Figure 2.4: 2

16



Figure 2.5: 2
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Figure 2.6: 2
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//Requires SIVP, IPD toolboxes

clear;
clc;

I=imread (’cameraman. jpg ) ;

//Break the cameraman image of dimension 256x256
into four equal

//square shapes Cl11, Cl12, C21 & C22 and display all
into a single

//figure of 2x2 dimensions.

C11=I(1:128, 1:128);

C12=1(1:128, 129:256) ;

C21=1(129:256, 1:128);

C22=1(129:256, 129:256) ;

imwrite (C11, 'Cl1l.jpeg’);//Top Left

imwrite (C12, C12.jpeg’);//Top Right

imwrite (C21, C21.jpeg’);//Bottom Left

imwrite (€22, 'C22.jpeg’);//Bottom Right

J=[C11 C12; C21 C22];//Reconstruct original image
from the squares

imwrite (J, 'Single.jpeg’);//Reconstructed image from
squares

//Interchange the CI1 & C22 and Cl12 & C21 and show
the image

K=[C22 C21; C12 C11];

imwrite (K, "Interchange.jpeg’);//Interchanged image
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Experiment: 3

Singular Value Decomposition

Scilab code Solution 3.3 3

//Singular Value Decomposition
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

A= [1,-2,3;3,2,-1];
(U,S,V]= svd(A);
A_recon = U*xS*xV’;
disp(U,’U =")
disp(8,’S =")
disp(V,’'V =")

disp(A_recon, ’A matrix from svd =)

// Output
//
/U=

//
// — 0.7071068 0.7071068

20



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

//
//
//
//
//
//
//
//

//
//
//

//
//
//
//

0.7071068 0
g —
4.2426407 0
0. 3
V =
0.3333333 0
0.6666667 1
— 0.6666667 0
A matrix from svd
1 — 2. 3
3 2. — 1

7071068

1622777

.8944272
.110D—-16
4472136

— 0.2981424
0.7453560
0.5962848

21



© 00 J O U i W N

e S e T = T e T T
© 00 J O U i WO NN = O

[\)
@)

Experiment: 4

Performing KL transform

Scilab code Solution 4.4 4

//Performing KL transform
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

X (3,5,6,7;5,6,3,3;4,6,7,5];
[m,n]l= size(X);
A= [1;
E = [];
for i =1:n
A = A+X(:,1i);
E = E+X(:,i)*X(:,1);

end

mx = A/n; //mean matrix

E = E/n;

C = E - mx*mx’; //covariance matrix C =
E[xx’] —mx+mx’

[V,D] = spec(C); //eigen values and eigen
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d_ =
[d,
for

end
T =

disp(d, "Eigen Values are U= ")
disp (T, "The eigen vector

vectors

diag (D) ;

eigen values
i] = gsort(d);

//diagonal elements od

//sorting the elements of D

in descending order
j = 1:length(d)
T(C:,3)=V(:,1(3));

T)

disp (T, 'The KL tranform basis

//KL transform

for

end

disp(Y, 'KL transformation of the input matrix Y =)

//Reconstruction

disp(x, "Reconstruct matrix of the given sample

i=1:n

Y(:,i)= T*X(:,1i);

Eigen Values are U =

The eigen vector matrix T =

— 0.5693168

for i = 1:n
x(:,1i)= T ’*Y(:,1i);

end

matrix X =7)
// Output
//
//
//
// 3.6278623
// 1.0409979
// 0.4561398
//
//
//
// 0.7383786
// 0.0603190

0.5896337
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Reconstruct matrix of the given sample matrix X =

0.6716835 0.5728966
The KL tranform basis 1is

0.7383786 — 0.5693168

0.0603190 0.5896337

0.6716835 0.5728966
KL transformation of the

0.8145143 2.444936
5.2681528

6.3507865 8.6718888
6.2182105

3.0006794 3.977516
4.0719067

3. 5. 6. 7.

5. 6. 3. 3.

4. 6. 7. 5.

— 0.

input

5.

7.

2.

4697135

0.3614907
0.
0.4697135

8054152

matrix Y =

2527556

7687219

4607962
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Experiment: 5

Brightness enhancement and
supression

check Appendix AP 5 for dependency:

baboon.png

Scilab code Solution 5.5 5

//Brightness enhancement and supression
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread ( "baboon.png’);
//Brightness Enhancement
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Figure 5.2: 5
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imwrite (b, 'BrightnessEnhancedImage.jpeg ) ;
a=imread ( "baboon.png’);

//Brightness suppression

a=
b
b

imwrite (b, "BrightnessSupressedImage . jpeg’);

rgb2gray(a);
double(a)+50;
uint8(b) ;

rgb2gray(a) ;
double(a) -50;
uint8(b) ;
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Experiment: 6

Contrast Manipulation

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 6.6 6

//Contrast Manipulation
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread (’Lenna.png’);

a = rgb2gray(a);
b = double(a)*0.5;
b = uint8(b)

29



Figure 6.1: 6
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Figure 6.2: 6

31



14
15
16
17
18

double (b) *2;
uint8(c)

imwrite (b, 'DecreaseinContrast.jpeg’);
imwrite(c, 'IncreaseinContrast.jpeg’);
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Experiment: 7

Color separation into R,B,G

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 7.7 7

//Color separation into R,B,G
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread ( 'peppers.png’);

33



Figure 7.1: 7
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Figure 7.2: 7
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Figure 7.3: 7
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bl = a;
cl = a;
al(:,:,1)=0;
b1(:,:,2)=0;
cl(:,:,3)=0;

imwrite (al,
imwrite (b1,
imwrite (cl,

"RedMissing . jpeg ') ;
"GreenMissing . jpeg’);
"BlueMissing . jpeg ) ;
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Experiment: 8

(Gamma correction

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 8.8 8

//Gamma correction

//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

I=imread ( 'ararauna.png’);

gamma_Value = 0.5;

max_intensity = 255; //for uint8 image

//Look up table creation

LUT = max_intensity.*(([0O:max_intensity]./
max_intensity) .  gamma_Value) ;
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Figure 8.1: 8
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LUT = floor (LUT);

//Mapping of input pixels

K = double(I)+1;
J = zeros(I);
[m,n,pl= size(K);
for i = 1:m
for j =1:n
for k = 1:p

J(i,j,k)= LUT(K(i,j,k));

end
end
end

imwrite (uint8(J),
IPD toolbox

"GammaCorrectedlmage . jpeg ') ;

into lookup table values

//
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Experiment: 9

Adding various types of noises
to image

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 9.9 9

//Add various types of noises to image
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

lenna=imread (’Lenna.png’);
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Figure 9.1: 9
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Figure 9.2: 9
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Figure 9.3: 9
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// Gaussian
lenaNgaussian = imnoise(lenna, 'gaussian ');
imwrite (lenaNgaussian, 'lenaNgaussian.jpeg’);

//Speckle
lenaNspeckle = imnoise(lenna, 'speckle ’);
imwrite (lenalNspeckle, "lenaNspeckle.jpeg’);

//Salt & Pepper

d=0.25 //drop out noise

lenaNsalpep = imnoise(lenna, 'salt & pepper’,d);
imwrite (lenalNsalpep, 'lenaNsalpep.jpeg’);
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Experiment: 10

Demonstrate the various Image
Conversions

check Appendix AP 1 for dependency:
Cameramanimg. jpg
check Appendix AP 3 for dependency:
Lenna.png
check Appendix AP 4 for dependency:
ararauna.png
check Appendix AP 5 for dependency:
baboon.png

check Appendix AP 2 for dependency:

peppers.png
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Figure 10.1: 10
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Figure 10.2: 10
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Figure 10.3: 10
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Figure 10.4: 10
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Figure 10.5: 10
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Figure 10.6: 10

Scilab code Solution 10.10 10

1 //Demonstrate the various Image Conversions
2 //Scilab 5.4.1

3 //Windows 10
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//Requires SIVP, IPD toolboxes

clear;
clc;

//RBG to Gray scale

baboon = imread(’baboon.png’);
babgray = rgb2gray(baboon);
imwrite (babgray, 'babgray.jpeg’);

//RBG to Binary

lena = imread(’Lenna.png’);
lenabw = im2bw(lena,0.5);
imwrite (lenabw, "lenabw. jpeg’);

//RBG to HSV

cameraman = imread(’cameraman.jpg’);
cameramanhsv = rgb2hsv(cameraman) ;

imwrite (cameramanhsv, 'cameramanhsv.jpeg ') ;

//HSV to RGB

peppers = imread(’peppers.png’);
peppersrgb = hsv2rgb(peppers);

imwrite (peppersrgb, 'peppersrgb.jpeg’);

//RBG to YCbCr

baboon = imread(’baboon.png’);
baboonycbcr = rgb2ycbcr (baboon) ;

imwrite (baboonycbcr, "baboonycbcer. jpeg ') ;

//YCbCr to RGB

ararauna = imread(’ararauna.png’);
araraunargb = ycbcr2rgb(ararauna) ;
imwrite (araraunargb, 'araraunargb.jpeg’);
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Experiment: 11

Demonstrate Spatial Domain
Processing

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 11.11 11

//Demonstrate Spatial Domain Processing
//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

lenna=imread (’Lenna.png’);
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Figure 11.1: 11
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Figure 11.2: 11

56



Figure 11.3: 11
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//Sobel

h = fspecial(’sobel’);

lenaSobel = imfilter (lenna,h)
imwrite (lenaSobel, "lenaSobel.jpeg’);

//Prewitt
h = fspecial(’prewitt ’);
lenaPrewitt = imfilter (lenna,h)

imwrite (lenaPrewitt, 'lenaPrewitt.jpeg’);

//Laplacian

h = fspecial(’laplacian’);

lenalaplacian = imfilter (lenna,h)

imwrite (lenalaplacian, 'lenalaplacian.jpeg’);
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Experiment: 12

Motion blur of an image

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 12.12 12

//Motion blur of an image
//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread (’ararauna.png’);

//filter coefficients of fspecial (’motion’,10,25)
H =[0,0,0,0,0,0,0,0.0032,0.0449,0.0865,0.0072;...
0,0,0,0,0,0.0092,0.0509,0.0925,0.0629,0.0213,0;
0,0,0,0.0152,0.0569,0.0985,0.05669,0.0152,0,0,0;
0,0.0213,0.0629,0.0925,0.0509,0.0092,0,0,0,0,0;
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Figure 12.1: 12
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0.0072,0.0865,0.0449,0.0032,0,0,0,0,0,0,01;
Motion_Blur = imfilter (a,H);
Motion_Blur =uint8(Motion_Blur);

imwrite (Motion_Blur, "MotionBlurredImage.jpeg ')
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Experiment: 13

Trimmed Average Filter

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 13.13 13

//Trimmed Average Filter
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

c=imread (’Lenna.png’);
s = 1; //s denotes the number of values to be left
in the end

T 1;
N = 9; //3x3 window
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Figure 13.1: 13
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Figure 13.2: 13
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a = double(imnoise(c, 'gaussian’));

[m,n] = size(a);

b = zeros(m,n);

for i= 2:m-1

for j = 2:n-1
mat = [a(i,j),a(i,j-1),a(i,j+1),a(i-1,j),a(d
+1,j),a(i-1,j-1),...
a(i-1,j+1),a(i-1,j+1),a(i+1,j+1)];

sorted_mat = gsort(mat);
Sum=0;
for k=r+s:(N-s)
Sum = Sum+mat (k) ;
end
b(i,j)= Sum/(N-r-s);
end
end
a = uint8(a);
b = uint8(b);
//figure
//imshow (¢)

//title (" Original Image”)

imwrite (a, 'noisyimage.jpeg’)
imwrite (b, "TrimmedAverageFilteredlmage . jpeg’)

65



© 00 N O U i W N+~

— =
N = O

Experiment: 14

Determine image negative

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 14.14 14

//Determine image negative
//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread (’'peppers.png’);

k = 255-double(a);

k = uint8(k);

imwrite (k, 'ImageNegative.jpeg’)
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Figure 14.1: 14
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Experiment: 15

Image operations to perform
clockwise and anti-clockwise
operations

check Appendix AP 1 for dependency:

Cameramanimg. jpg

Scilab code Solution 15.15 15

//Image operations to perform clockwise and anti-—
clockwise operations

//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;
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Figure 15.1: 15
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Figure 15.2: 15
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A = imread(’Cameramanimg.jpg’) ;

//Rotate the Image anticlockwise by an angle of 90
degrees

[M,N]=size(A);
for i=1:N

for j=1:M

B(j,i)=A(i,j);

end
end
NM=B(N:-1:1,:);
imwrite (NM, "anticlockwise90 . jpeg’)

//Rotate the Image by an angle of 180 degrees
B= A(size(A,1):-1:1,size(A,1):-1:1,:);
imwrite (B, "clockwisel80 . jpeg ')
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