Scilab Manual for
Digital Image Processing
by Dr Abhishek Choubey
Electronics Engineering
Sreenidhi Institute Of Science And
Technology?

Solutions provided by
Dr Abhishek Choubey
Electronics Engineering
Sreenidhi Institute Of Science And Technology

February 12, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

3

8

9

Image analysis on 16 X 16 image size
Image analysis on 256 X 256 image size
Singular Value Decomposition
Performing KL transform

Brightness enhancement and supression
Contrast Manipulation

Color separation into R,B,G

Gamma correction

Adding various types of noises to image

10 Demonstrate the various Image Conversions

11 Demonstrate Spatial Domain Processing

12 Motion blur of an image

13 Trimmed Average Filter

14 Determine image negative

12

20

22

25

29

33

38

41

46

54

59

62

66

15 Image operations to perform clockwise and anti-clockwise
operations 68

List of Experiments

Solution 1.1
Solution 2.2
Solution 3.3
Solution 4.4
Solution 5.5
Solution 6.6
Solution 7.7
Solution 8.8
Solution 9.9
Solution 10.10
Solution 11.11
Solution 12.12
Solution 13.13
Solution 14.14
Solution 15.15
AP 1

AP 2

AP 3

AP 4

AP 5

15 ..

peppers
Lenna

ararauna0 000 e e e e e e

baboon

12
20
22
25
29
33
38
41
52
o4
99
62
66
68
73
74
75
76
7

List of Figures

10.4
10.5
10.6

11.1
11.2
11.3

12.1

13.1
13.2

14.1

15.1
15.2

50
51
52

55
56
o7

60

63
64

67

69
70

© 00 J O U i W N

10
11
12

Experiment: 1

Image analysis on 16 X 16
image size

Scilab code Solution 1.1 1

//Image analysis on 16%16 image size
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

//Form an image of dimension 16x16 containing 16
vertical strips

A=[0 1 2 3456 789 10 11 12 13 14 15;

3 10 11 12 13 14 15;

3

01 2 4 56789
01 2 4 56 7 8 9 10 11 12 13 14 15;

Figure 1.1: 1

Figure 1.2: 1

Figure 1.3: 1

10

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37

38
39
40

O O O O O OO OO O oo

0

e e e = e T =

1

NDNNDNDNMNDNDNMNDNDNMDNDNDDN

2

W W wWwwowowaowawaww w
OO O N O N O O O N

3

4

oy o O O O O OO OO O On

5

Al=mat2gray (4);

imwrite (A1, "VerticalStrips

//Form a check—board "B”

[e)3e> e e) B eI e) B o) N e) B e) N o) BN o) N e) B e)

NN N NNANANN N NN

O 00 00 00 0 00 O 00 0 00 0 00

© O© © © OV © © O © OV ©O © ©o

containing 16 blocks

a=[0 9;
b=[a a;
c=[b b;
B=[c c;
Bl=mat2gray (B);
imwrite (B1, 'Check—board. jpeg’);

//Form image containing top—left and bottom—right
parts A and top—right & bottom—left

quarter
quarters B.
C=[A B; B AJ;

9 0];
a al;

b bl;

c cl;

Cl=mat2gray (C);
imwrite (C1, "Quarter.jpeg’);

10
10
10
10
10
10
10
10
10
10
10
10
10

11
11
11
11
11
11
11
11
11
11
11
11
11

12
12
12
12
12
12
12
12
12
12
12
12
12

13
13
13
13
13
13
13
13
13
13
13
13
13

.jpeg’);

14
14
14
14
14
14
14
14
14
14
14
14
14

15;
15;
15;
15;
15;
15;
15;
15;
15;
15;
15;
15;
1571 ;

of dimension 16x16

11

Experiment: 2

Image analysis on 256 X 256
image size

check Appendix AP 1 for dependency:

Cameramanimg. jpg

Scilab code Solution 2.2 2
1 //Image analysis on 256%256 image size

2 //Scilab 5.4.1
3 //Windows 10

12

Figure 2.1: 2

13

Figure 2.2: 2

14

Figure 2.3: 2

15

Figure 2.4: 2

16

Figure 2.5: 2

17

Figure 2.6: 2

18

© 00 J O Ut &~

10
11

12

13
14
15
16
17
18
19
20
21
22

23

24
25

26
27

//Requires SIVP, IPD toolboxes

clear;
clc;

I=imread (’cameraman. jpg) ;

//Break the cameraman image of dimension 256x256
into four equal

//square shapes Cl11, Cl12, C21 & C22 and display all
into a single

//figure of 2x2 dimensions.

C11=I(1:128, 1:128);

C12=1(1:128, 129:256) ;

C21=1(129:256, 1:128);

C22=1(129:256, 129:256) ;

imwrite (C11, 'Cl1l.jpeg’);//Top Left

imwrite (C12, C12.jpeg’);//Top Right

imwrite (C21, C21.jpeg’);//Bottom Left

imwrite (€22, 'C22.jpeg’);//Bottom Right

J=[C11 C12; C21 C22];//Reconstruct original image
from the squares

imwrite (J, 'Single.jpeg’);//Reconstructed image from
squares

//Interchange the CI1 & C22 and Cl12 & C21 and show
the image

K=[C22 C21; C12 C11];

imwrite (K, "Interchange.jpeg’);//Interchanged image

19

© 00 J O U i W N

I I e e T e T e T e e T o i Y
_ O © 00 J O U i W NN+ O

Experiment: 3

Singular Value Decomposition

Scilab code Solution 3.3 3

//Singular Value Decomposition
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

A= [1,-2,3;3,2,-1];
(U,S,V]= svd(A);
A_recon = U*xS*xV’;
disp(U,’U =")
disp(8,’S =")
disp(V,’'V =")

disp(A_recon, ’A matrix from svd =)

// Output
//
/U=

//
// — 0.7071068 0.7071068

20

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

//
//
//
//
//
//
//
//

//
//
//

//
//
//
//

0.7071068 0
g —
4.2426407 0
0. 3
V =
0.3333333 0
0.6666667 1
— 0.6666667 0
A matrix from svd
1 — 2. 3
3 2. — 1

7071068

1622777

.8944272
.110D—-16
4472136

— 0.2981424
0.7453560
0.5962848

21

© 00 J O U i W N

e S e T = T e T T
© 00 J O U i WO NN = O

[\)
@)

Experiment: 4

Performing KL transform

Scilab code Solution 4.4 4

//Performing KL transform
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

X (3,5,6,7;5,6,3,3;4,6,7,5];
[m,n]l= size(X);
A= [1;
E = [];
for i =1:n
A = A+X(:,1i);
E = E+X(:,i)*X(:,1);

end

mx = A/n; //mean matrix

E = E/n;

C = E - mx*mx’; //covariance matrix C =
E[xx’] —mx+mx’

[V,D] = spec(C); //eigen values and eigen

22

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54

d_ =
[d,
for

end
T =

disp(d, "Eigen Values are U= ")
disp (T, "The eigen vector

vectors

diag (D) ;

eigen values
i] = gsort(d);

//diagonal elements od

//sorting the elements of D

in descending order
j = 1:length(d)
T(C:,3)=V(:,1(3));

T)

disp (T, 'The KL tranform basis

//KL transform

for

end

disp(Y, 'KL transformation of the input matrix Y =)

//Reconstruction

disp(x, "Reconstruct matrix of the given sample

i=1:n

Y(:,i)= T*X(:,1i);

Eigen Values are U =

The eigen vector matrix T =

— 0.5693168

for i = 1:n
x(:,1i)= T ’*Y(:,1i);

end

matrix X =7)
// Output
//
//
//
// 3.6278623
// 1.0409979
// 0.4561398
//
//
//
// 0.7383786
// 0.0603190

0.5896337

23

matrix T =7)

—)

0.3614907
0.8054152

55
56
o7
o8
99
60
61
62
63
64
65

66

67

68
69
70
71
72
73
74

Reconstruct matrix of the given sample matrix X =

0.6716835 0.5728966
The KL tranform basis 1is

0.7383786 — 0.5693168

0.0603190 0.5896337

0.6716835 0.5728966
KL transformation of the

0.8145143 2.444936
5.2681528

6.3507865 8.6718888
6.2182105

3.0006794 3.977516
4.0719067

3. 5. 6. 7.

5. 6. 3. 3.

4. 6. 7. 5.

— 0.

input

5.

7.

2.

4697135

0.3614907
0.
0.4697135

8054152

matrix Y =

2527556

7687219

4607962

24

© 00 J O U i W N

—_ =
)

Experiment: 5

Brightness enhancement and
supression

check Appendix AP 5 for dependency:

baboon.png

Scilab code Solution 5.5 5

//Brightness enhancement and supression
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread ("baboon.png’);
//Brightness Enhancement

25

5.1: 5

igure

F

26

Figure 5.2: 5

27

12
13
14
15
16
17
18
19
20
21
22
23

a
b
b

imwrite (b, 'BrightnessEnhancedImage.jpeg) ;
a=imread ("baboon.png’);

//Brightness suppression

a=
b
b

imwrite (b, "BrightnessSupressedImage . jpeg’);

rgb2gray(a);
double(a)+50;
uint8(b) ;

rgb2gray(a) ;
double(a) -50;
uint8(b) ;

28

© 00 N O U b W N =

— = = =
w N = O

Experiment: 6

Contrast Manipulation

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 6.6 6

//Contrast Manipulation
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread (’Lenna.png’);

a = rgb2gray(a);
b = double(a)*0.5;
b = uint8(b)

29

Figure 6.1: 6

30

Figure 6.2: 6

31

14
15
16
17
18

double (b) *2;
uint8(c)

imwrite (b, 'DecreaseinContrast.jpeg’);
imwrite(c, 'IncreaseinContrast.jpeg’);

32

© 00 J O U b W N

—_ =
)

Experiment: 7

Color separation into R,B,G

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 7.7 7

//Color separation into R,B,G
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread ('peppers.png’);

33

Figure 7.1: 7

34

Figure 7.2: 7

35

Figure 7.3: 7

36

12
13
14
15
16
17
18
19
20

bl = a;
cl = a;
al(:,:,1)=0;
b1(:,:,2)=0;
cl(:,:,3)=0;

imwrite (al,
imwrite (b1,
imwrite (cl,

"RedMissing . jpeg ') ;
"GreenMissing . jpeg’);
"BlueMissing . jpeg) ;

37

© 00 N O U i W N+~

I = T
B~ w N — O

Experiment: 8

(Gamma correction

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 8.8 8

//Gamma correction

//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

I=imread ('ararauna.png’);

gamma_Value = 0.5;

max_intensity = 255; //for uint8 image

//Look up table creation

LUT = max_intensity.*(([0O:max_intensity]./
max_intensity) . gamma_Value) ;

38

Figure 8.1: 8

39

15
16
17
18
19
20
21
22
23
24
25
26
27
28

LUT = floor (LUT);

//Mapping of input pixels

K = double(I)+1;
J = zeros(I);
[m,n,pl= size(K);
for i = 1:m
for j =1:n
for k = 1:p

J(i,j,k)= LUT(K(i,j,k));

end
end
end

imwrite (uint8(J),
IPD toolbox

"GammaCorrectedlmage . jpeg ') ;

into lookup table values

//

40

© 00 J O U i W N

Experiment: 9

Adding various types of noises
to image

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 9.9 9

//Add various types of noises to image
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

lenna=imread (’Lenna.png’);

41

Figure 9.1: 9

42

Figure 9.2: 9

43

Figure 9.3: 9

44

10
11
12
13
14
15
16
17
18
19
20
21
22

// Gaussian
lenaNgaussian = imnoise(lenna, 'gaussian ');
imwrite (lenaNgaussian, 'lenaNgaussian.jpeg’);

//Speckle
lenaNspeckle = imnoise(lenna, 'speckle ’);
imwrite (lenalNspeckle, "lenaNspeckle.jpeg’);

//Salt & Pepper

d=0.25 //drop out noise

lenaNsalpep = imnoise(lenna, 'salt & pepper’,d);
imwrite (lenalNsalpep, 'lenaNsalpep.jpeg’);

45

Experiment: 10

Demonstrate the various Image
Conversions

check Appendix AP 1 for dependency:
Cameramanimg. jpg
check Appendix AP 3 for dependency:
Lenna.png
check Appendix AP 4 for dependency:
ararauna.png
check Appendix AP 5 for dependency:
baboon.png

check Appendix AP 2 for dependency:

peppers.png

46

Figure 10.1: 10

47

Figure 10.2: 10

48

Figure 10.3: 10

49

Figure 10.4: 10

50

Figure 10.5: 10

o1

Figure 10.6: 10

Scilab code Solution 10.10 10

1 //Demonstrate the various Image Conversions
2 //Scilab 5.4.1

3 //Windows 10

52

© 00 N O U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//Requires SIVP, IPD toolboxes

clear;
clc;

//RBG to Gray scale

baboon = imread(’baboon.png’);
babgray = rgb2gray(baboon);
imwrite (babgray, 'babgray.jpeg’);

//RBG to Binary

lena = imread(’Lenna.png’);
lenabw = im2bw(lena,0.5);
imwrite (lenabw, "lenabw. jpeg’);

//RBG to HSV

cameraman = imread(’cameraman.jpg’);
cameramanhsv = rgb2hsv(cameraman) ;

imwrite (cameramanhsv, 'cameramanhsv.jpeg ') ;

//HSV to RGB

peppers = imread(’peppers.png’);
peppersrgb = hsv2rgb(peppers);

imwrite (peppersrgb, 'peppersrgb.jpeg’);

//RBG to YCbCr

baboon = imread(’baboon.png’);
baboonycbcr = rgb2ycbcr (baboon) ;

imwrite (baboonycbcr, "baboonycbcer. jpeg ') ;

//YCbCr to RGB

ararauna = imread(’ararauna.png’);
araraunargb = ycbcr2rgb(ararauna) ;
imwrite (araraunargb, 'araraunargb.jpeg’);

53

© 00 J O U i W N

Experiment: 11

Demonstrate Spatial Domain
Processing

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 11.11 11

//Demonstrate Spatial Domain Processing
//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

lenna=imread (’Lenna.png’);

o4

Figure 11.1: 11

95

Figure 11.2: 11

56

Figure 11.3: 11

o7

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

//Sobel

h = fspecial(’sobel’);

lenaSobel = imfilter (lenna,h)
imwrite (lenaSobel, "lenaSobel.jpeg’);

//Prewitt
h = fspecial(’prewitt ’);
lenaPrewitt = imfilter (lenna,h)

imwrite (lenaPrewitt, 'lenaPrewitt.jpeg’);

//Laplacian

h = fspecial(’laplacian’);

lenalaplacian = imfilter (lenna,h)

imwrite (lenalaplacian, 'lenalaplacian.jpeg’);

58

© 00 N O U i W N+~

— = e e
U W N = O

Experiment: 12

Motion blur of an image

check Appendix AP 4 for dependency:

ararauna.png

Scilab code Solution 12.12 12

//Motion blur of an image
//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread (’ararauna.png’);

//filter coefficients of fspecial (’motion’,10,25)
H =[0,0,0,0,0,0,0,0.0032,0.0449,0.0865,0.0072;...
0,0,0,0,0,0.0092,0.0509,0.0925,0.0629,0.0213,0;
0,0,0,0.0152,0.0569,0.0985,0.05669,0.0152,0,0,0;
0,0.0213,0.0629,0.0925,0.0509,0.0092,0,0,0,0,0;

59

Figure 12.1: 12

60

16
17
18
19
20

0.0072,0.0865,0.0449,0.0032,0,0,0,0,0,0,01;
Motion_Blur = imfilter (a,H);
Motion_Blur =uint8(Motion_Blur);

imwrite (Motion_Blur, "MotionBlurredImage.jpeg ')

61

© 00 N O U i W N

1

o

12

Experiment: 13

Trimmed Average Filter

check Appendix AP 3 for dependency:

Lenna.png

Scilab code Solution 13.13 13

//Trimmed Average Filter
//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

c=imread (’Lenna.png’);
s = 1; //s denotes the number of values to be left
in the end

T 1;
N = 9; //3x3 window

62

Figure 13.1: 13

63

Figure 13.2: 13

64

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

a = double(imnoise(c, 'gaussian’));

[m,n] = size(a);

b = zeros(m,n);

for i= 2:m-1

for j = 2:n-1
mat = [a(i,j),a(i,j-1),a(i,j+1),a(i-1,j),a(d
+1,j),a(i-1,j-1),...
a(i-1,j+1),a(i-1,j+1),a(i+1,j+1)];

sorted_mat = gsort(mat);
Sum=0;
for k=r+s:(N-s)
Sum = Sum+mat (k) ;
end
b(i,j)= Sum/(N-r-s);
end
end
a = uint8(a);
b = uint8(b);
//figure
//imshow (¢)

//title (" Original Image”)

imwrite (a, 'noisyimage.jpeg’)
imwrite (b, "TrimmedAverageFilteredlmage . jpeg’)

65

© 00 N O U i W N+~

— =
N = O

Experiment: 14

Determine image negative

check Appendix AP 2 for dependency:

peppers.png

Scilab code Solution 14.14 14

//Determine image negative
//Scilab 5.4.1

// Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

a=imread (’'peppers.png’);

k = 255-double(a);

k = uint8(k);

imwrite (k, 'ImageNegative.jpeg’)

66

Figure 14.1: 14

67

O J O Ot i W N

Experiment: 15

Image operations to perform
clockwise and anti-clockwise
operations

check Appendix AP 1 for dependency:

Cameramanimg. jpg

Scilab code Solution 15.15 15

//Image operations to perform clockwise and anti-—
clockwise operations

//Scilab 5.4.1

//Windows 10

//Requires SIVP, IPD toolboxes

clear;
clc;

68

Figure 15.1: 15

69

Figure 15.2: 15

70

10
11

12
13
14
15
16
17
18
19
20
21
22
23

A = imread(’Cameramanimg.jpg’) ;

//Rotate the Image anticlockwise by an angle of 90
degrees

[M,N]=size(A);
for i=1:N

for j=1:M

B(j,i)=A(i,j);

end
end
NM=B(N:-1:1,:);
imwrite (NM, "anticlockwise90 . jpeg’)

//Rotate the Image by an angle of 180 degrees
B= A(size(A,1):-1:1,size(A,1):-1:1,:);
imwrite (B, "clockwisel80 . jpeg ')

71

Appendix

72

Cameramanimg

73

pers

74

75

76

boon

I,
IS
2
§

77

	
	Image analysis on 16 X 16 image size
	Image analysis on 256 X 256 image size
	Singular Value Decomposition
	Performing KL transform
	Brightness enhancement and supression
	Contrast Manipulation
	Color separation into R,B,G
	Gamma correction
	Adding various types of noises to image
	Demonstrate the various Image Conversions
	Demonstrate Spatial Domain Processing
	Motion blur of an image
	Trimmed Average Filter
	Determine image negative
	Image operations to perform clockwise and anti-clockwise operations

