
Scilab Manual for
Computer Communication Networks

by Dr Sujata Shekhar Kulkarni
Others

Spit Mumbai1

Solutions provided by
Dr Sujata Shekhar Kulkarni

Others
Spit Mumbai

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 HAMMING CODE 5

2 IP CHECKSUM 9

3 SHORTEST PATH DISTANCE ALGORITHM 14

4 CALCULATE FIRST AND LAST ADDRESS OF GIVEN
NETWORK 20

5 DESIGN OF SUBNET IN CLASSFUL IP ADDRESS 24

2

List of Experiments

Solution 1.1 Hamming code for error detection and correction 5
Solution 2.2 Calculation of IP Header Checksum 9
Solution 3.3 Study and calculate shortest path distance using

Dijkstras Algorithm 14
Solution 4.4 To determine First address and Last address and

Number of addresses in the block from any given
classless address 20

Solution 5.5 To determine the Class and first and last address of
the class Number of networks and Number of hosts
for a given classful address 24

3

List of Figures

1.1 Hamming code for error detection and correction 7
1.2 Hamming code for error detection and correction 8

2.1 Calculation of IP Header Checksum 10

3.1 Study and calculate shortest path distance using Dijkstras Al-
gorithm . 19

4.1 To determine First address and Last address and Number of
addresses in the block from any given classless address . . . 23

4.2 To determine First address and Last address and Number of
addresses in the block from any given classless address . . . 23

5.1 To determine the Class and first and last address of the class
Number of networks and Number of hosts for a given classful
address . 27

5.2 To determine the Class and first and last address of the class
Number of networks and Number of hosts for a given classful
address . 28

4

Experiment: 1

HAMMING CODE

Scilab code Solution 1.1 Hamming code for error detection and correc-
tion

1 // Note : D e t a i l s o f s c i l a b s o f t w a r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Ubuntu 1 4 . 0 4 LTS , 64 b i t
3 // S c i l a b v e r s i o n : 5 . 5 . 0 (Tested on 64 b i t v e r s i o n)
4 // Program T i t l e : Study and c a l c u l a t e HAMMING CODE

GENERATION AND CORRECTION
5 clear;

6 clc;

7 clear all;

8 close;

9 x=input(’ Enter 8 b i t data : ’);
10 p=[0 0 0 0];

11 p1=[0 0 0 0];

12 error_pos =0;

13 d=[p(1) p(2) x(1) p(3) x(2) x(3) x(4) p(4) x(5) x(6)

x(7) x(8)];

14 p(1)=modulo ((d(1)+d(3)+d(5)+d(7)+d(9)+d(11)) ,2);

15 p(2)=modulo ((d(2)+d(3)+d(6)+d(7)+d(10)+d(11)) ,2);

16 p(3)=modulo ((d(4)+d(5)+d(6)+d(7)+d(12)) ,2);

17 p(4)=modulo ((d(8)+d(9)+d(10)+d(11)+d(12)) ,2);

5

18 d=[p(1) p(2) x(1) p(3) x(2) x(3) x(4) p(4) x(5) x(6)

x(7) x(8)];

19 disp(’Hamming code i s : ’);
20 disp(d);

21 d1=input(’ Enter 12 b i t r e c e i v e d data : ’);
22 p1(1)=modulo ((d1(1)+d1(3)+d1(5)+d1(7)+d1(9)+d1(11))

,2);

23 p1(2)=modulo ((d1(2)+d1(3)+d1(6)+d1(7)+d1(10)+d1(11))

,2);

24 p1(3)=modulo ((d1(4)+d1(5)+d1(6)+d1(7)+d1(12)) ,2);

25 p1(4)=modulo ((d1(8)+d1(9)+d1(10)+d1(11)+d1(12)) ,2);

26 // d i s p (” p i s : ”) ;
27 // d i s p (p) ;
28 for i=1:4

29 if p1(i)==1 then

30 error_pos= error_pos +(2^(i-1));

31 end

32 end

33 disp(’ e r r o r i s i n b i t p o s i t i o n− ’);
34 disp(error_pos);

35

36 d2=bitxor(d,d1);

37 disp(’ c o r r e c t codeword i s− ’);
38 d3=bitxor(d1 ,d2);

39 disp(d3);

40

41

42

43 //INPUT
44 // Enter 8 b i t data [1 1 0 0 1 1 0 0]
45 // Enter 12 b i t r e c e i v e d data [1 1 1 1 1 0 0 0 1 1 0

0]
46

47 //OUTPUT
48 // Enter 8 b i t data : [1 1 0 0 1 1 0 0]
49 //
50 // Hamming code i s :
51 //

6

Figure 1.1: Hamming code for error detection and correction

52 // 1 . 0 . 1 . 1 . 1 . 0 . 0 . 0 .
1 . 1 . 0 . 0 .

53 // Enter 12 b i t r e c e i v e d data : [1 1 1 1 1 0 0 0 1 1
0 0]

54 //
55 // e r r o r i s i n b i t p o s i t i o n−
56 //
57 // 2 .
58 //
59 // c o r r e c t codeword i s−
60 //
61 // 1 . 0 . 1 . 1 . 1 . 0 . 0 . 0 .

1 . 1 . 0 . 0 .
62 //

7

Figure 1.2: Hamming code for error detection and correction

8

Experiment: 2

IP CHECKSUM

Scilab code Solution 2.2 Calculation of IP Header Checksum

1 // Note : D e t a i l s o f s c i l a b s o f t w a r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Ubuntu 1 4 . 0 4 LTS , 64 b i t
3 // S c i l a b v e r s i o n : 5 . 5 . 0 (Tested on 64 b i t v e r s i o n)
4 // Program T i t l e : HEADER CHECKSUM OF INTERNET

PROTOCOL(IP)
5 clear;

6 clc;

7 ve = input(’ Enter the v e r s i o n number ’)
8 hlen = input(’ Enter header l e n g t h ’)
9 ds = input(’ Enter DS ’)

10 tl = input(’ Enter the t o t a l l e n g t h ’)
11 inum = input(’ Enter the i d e n t i f i c a t i o n number ’)
12 flag = input(’ Enter Flag b i t s ’)
13 frag = input(’ Enter Fragmentat ion o f f s e t b i t s ’)
14 ttl =input(’ Enter Time to L ive b i t s ’)
15 prot = input(’ Enter P r o t o c o l B i t s ’)
16 hech = input(’ Enter Header checksum b i t s ’)
17 sip1 =input(’ Enter the 1 s t pa r t o f Source IP : ’)

9

Figure 2.1: Calculation of IP Header Checksum

18 sip2 =input(’ Enter the 2nd pa r t o f Source IP : ’)
19 sip3 =input(’ Enter the 3 rd pa r t o f Source IP : ’)
20 sip4 =input(’ Enter the 4 th pa r t o f Source IP : ’)
21 dip1 =input(’ Enter the 1 s t pa r t o f D e s t i n a t i o n IP :

’)
22 dip2 =input(’ Enter the 2nd pa r t o f D e s t i n a t i o n IP :

’)
23 dip3 =input(’ Enter the 3 rd pa r t o f D e s t i n a t i o n IP :

’)
24 dip4 =input(’ Enter the 4 th pa r t o f D e s t i n a t i o n IP :

’)
25

26 bver=dec2bin(ve ,4);

27 bhlen=dec2bin(hlen ,4);

28 bds=dec2bin(ds ,8);

29 btl=dec2bin(tl ,16);

30 binum=dec2bin(inum ,16);

31 bflag=dec2bin(flag ,3);

32 bfrag=dec2bin(frag ,13);

33 bttl=dec2bin(ttl ,8);

10

34 bprot=dec2bin(prot ,8);

35 bhech=dec2bin(hech ,16);

36 bsip1=dec2bin(sip1 ,8);

37 bsip2=dec2bin(sip2 ,8);

38 bsip3=dec2bin(sip3 ,8);

39 bsip4=dec2bin(sip4 ,8);

40 bdip1=dec2bin(dip1 ,8);

41 bdip2=dec2bin(dip2 ,8);

42 bdip3=dec2bin(dip3 ,8);

43 bdip4=dec2bin(dip4 ,8);

44

45 a=string(bver);

46 b=string(bhlen);

47 c=string(bds);

48 d=strcat ([a,b,c]);// l i n e 1
49

50 f=bin2dec(d);// l i n e 1 dec
51 g=f+tl+inum+hech;

52 a=string(bflag);

53 b=string(bfrag);

54 c=strcat(a,b);

55

56 d=bin2dec(c);

57 a=string(bttl);

58 b=string(bprot);

59 c=strcat ([a,b]);

60

61 e=bin2dec(c);

62 g=g+d+e;

63

64 a=string(bsip1);

65 b=string(bsip2);

66 c=strcat ([a,b]);

67 x=bin2dec(c);

68 a=string(bsip3);

69 b=string(bsip4);

70 c=strcat ([a,b]);

71 y=bin2dec(c);

11

72 g=g+x+y;

73

74 a=string(bdip1);

75 b=string(bdip2);

76 c=strcat ([a,b]);

77 x=bin2dec(c);

78 a=string(bdip3);

79 b=string(bdip4);

80 c=strcat ([a,b]);

81 y=bin2dec(c);

82

83 g=g+x+y;

84

85 z=dec2bin(g,16);

86 disp(” R e s u l t o f 1 s complement a d d i t i o n i s : ”);
87 disp(z);

88 g=bitxor(g ,65535);

89 z1=dec2bin(g,16);

90 disp(” Actua l Checksum i s : ”);
91 disp(z1);

92

93 //INPUT
94 // Enter the v e r s i o n number 4
95 // Enter header l e n g t h 5
96 // Enter DS 0
97 // Enter the t o t a l l e n g t h 28
98 // Enter the i d e n t i f i c a t i o n number 1
99 // Enter Flag b i t s 0

100 // Enter Fragmentat ion o f f s e t b i t s 0
101 // Enter Time to L ive b i t s 4
102 // Enter P r o t o c o l B i t s 1 7
103 // Enter Header checksum b i t s 0
104 // Enter the 1 s t pa r t o f s i p 1 0
105 // Enter the 2nd pa r t o f s i p 1 2
106 // Enter the 3 rd pa r t o f s i p 1 4
107 // Enter the 4 th pa r t o f s i p 5
108 // Enter the 1 s t pa r t o f d ip12
109 // Enter the 2nd pa r t o f d ip6

12

110 // Enter the 3 rd pa r t o f d ip7
111 // Enter the 4 th pa r t o f d ip9
112 //
113 // OUTPUT
114 // R e s u l t o f 1 s complement a d d i t i o n i s :

0111010001001110
115 //
116 // Actua l checksum −1000101110110001

13

Experiment: 3

SHORTEST PATH
DISTANCE ALGORITHM

Scilab code Solution 3.3 Study and calculate shortest path distance using
Dijkstras Algorithm

1 // Note : D e t a i l s o f s c i l a b s o f t w a r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Ubuntu 1 4 . 0 4 LTS , 64 b i t
3 // S c i l a b v e r s i o n : 5 . 5 . 0 (Tested on 64 b i t v e r s i o n)
4 // Program T i t l e : Study and c a l c u l a t e s h o r t e s t path

d i s t a n c e u s i n g D i j k s t r a ’ s Algor i thm
5 clear;

6 clc;

7 printf(”B . . \ n . . . \ n . . . \ n . .
. \ n . A D\n \ n .

. . . \ n \n . . .
. \ n \ n C E”)

8 // Topology
9 // B . .
10 // . . .
11 // . . .
12 // . . .
13 // . A D

14

14 //
15 //
16 //
17 //
18 //
19 // C E
20 // Here Node A i s the s o u r c e node
21 disp(’ Here Node A i s the s o u r c e node ’);
22 ds=input(’ s e l e c t the d e s t i n a t i o n node from b c d e :

’ , ’ s ’);// a i s the s o u r c e node
23 d1=input(’ e n t e r the d i s t a n c e from a−b : ’);// m e t r i c

from r e s p e c t i v e node
24 d2=input(’ e n t e r the d i s t a n c e from a−c : ’);
25 d3=input(’ e n t e r the d i s t a n c e from a−d : ’);
26 d5=input(’ e n t e r the d i s t a n c e from b−c : ’);
27 d6=input(’ e n t e r the d i s t a n c e from b−d : ’);
28 d7=input(’ e n t e r the d i s t a n c e from c−e : ’);
29 d8=input(’ e n t e r the d i s t a n c e from d−e : ’);
30 d9=input(’ e n t e r the d i s t a n c e from c−d : ’);
31 if(ds== ’ b ’)
32 disp(’ There a r e 6 p o s s i b l e path and the s h o r t e s t

path i s ’);// paths a v a i l a b l e and the
s h o r t e s t path a l o ng w i t h i n t e r m e d i a t e node f o r
b

33 b1=d1;

34 b2=d2+d5;

35 b3=d3+d6;

36 b4=d3+d8+d7+d5;

37 b5=d3+d9+d5;

38 b6=d2+d9+d6;

39 if b1<b2& b1<b3& b1<b4& b1 <b5& b1 <b6

40 disp(’ Path from a to b ’);
41 else

42 if b2<b3& b2<b4& b2 <b5& b2 <b6

43 disp(’ Path from a to b v i a c ’);
44 else

45 if b3<b4& b3<b5& b3<b6

46 disp(’ Path from a to b v i a d ’);

15

47 else

48 if b4<b5& b4<b6

49 disp(’ Path from a to b v i a d − e − c
’);

50 else

51 if b5<b6

52 disp(’ Path from a to b v i a d − c ’);
53 else

54 disp(’ Path from a to b v i a c − d ’);
55 end

56 end

57 end

58 end

59 end

60 end

61 if(ds== ’ c ’)
62 disp(’ There a r e 4 p o s s i b l e path and the s h o r t e s t

path i s ’);// paths a v a i l a b l e and the s h o r t e s t
path a l o n g w i t h i n t e r m e d i a t e node f o r c

63 c1=d2;

64 c2=d1+d5;

65 c3=d3+d9;

66 c4=d3+d8+d7;

67 if c1<c2& c1<c3& c1 <c4

68 disp(’ Path from a to c ’);
69 else

70 if c2<c3& c2<c4

71 disp(’ Path from a to c v i a b ’);
72 else

73 if c3<c4

74 disp(’ Path from a to c v i a d ’);
75 else

76 disp(’ Path from a to c v i a d − e ’);
77 end

78 end

79 end

80 end

81 if(ds== ’ e ’)

16

82 disp(’ There a r e 5 p o s s i b l e path and the s h o r t e s t
path i s ’);// paths a v a i l a b l e and the s h o r t e s t
path a l o n g w i t h i n t e r m e d i a t e node f o r e

83 e1=d3+d8;

84 e2=d2+d7;

85 e3=d1+d5+d7;

86 e4=d2+d9+d8;

87 e5=d3+d7+d9;

88 if e1<e2& e1<e3 & e1<e4& e1<e5

89 disp(’ Path from a to e v i a d ’);
90 else

91 if e2<e3 & e2<e4& e2<e5

92 disp(’ Path from a to e v i a c ’);
93 else

94 if e3<e4& e3<e5

95 disp(’ Path from a to e v i a b − c ’);
96 else

97 if e4<e5

98 disp(’ Path from a to e v i a c − d ’);
99 else

100 disp(’ Path from a to e v i a d − c ’);
101 end

102 end

103 end

104 end

105 end

106 if(ds== ’ d ’)
107 disp(’ There a r e 6 p o s s i b l e path and the s h o r t e s t

path i s ’);// paths a v a i l a b l e and the
s h o r t e s t path a l o ng w i t h i n t e r m e d i a t e node f o r
b

108 x1=d3;

109 x2=d1+d6;

110 x3=d2+d9;

111 x4=d2+d7+d8;

112 x6=d1+d7+d5+d8;

113 x5=d1+d5+d9;

114 if x1<x2& x1<x3& x1 <x4& x1 <x5& x1 <x6

17

115 disp(’ Path from a to d ’);
116 else

117 if x2<x3& x2<x4& x2 <x5& x2 <x6

118 disp(’ Path from a to d v i a b ’);
119 else

120 if x3<x4& x3<x5& x3 <x6

121 disp(’ Path from a to d v i a c ’);
122 else

123 if x4<x5& x4<x6

124 disp(’ Path from a to d v i a c − e ’);
125 else

126 if x5<x6

127 disp(’ Path from a to d v i a b − c ’);
128 else

129 disp(’ Path from a to d v i a b − c − e
’);

130 end

131 end

132 end

133 end

134 end

135 end

136

137

138

139 //INPUT
140 // s e l e c t the d e s t i n a t i o n node from b c d e : e
141 // e n t e r the d i s t a n c e from a−b : 1
142 // e n t e r the d i s t a n c e from a−c : 2
143 // e n t e r the d i s t a n c e from a−d : 1
144 // e n t e r the d i s t a n c e from b−c : 1
145 // e n t e r the d i s t a n c e from b−d : 2
146 // e n t e r the d i s t a n c e from c−e : 1
147 // e n t e r the d i s t a n c e from d−e : 2
148 // e n t e r the d i s t a n c e from c−d : 1
149 //
150 //OUTPUT
151 // There a r e 5 p o s s i b l e path and the s h o r t e s t path

18

Figure 3.1: Study and calculate shortest path distance using Dijkstras Algo-
rithm

i s
152 //
153 // Path from a to e v i a d − c

19

Experiment: 4

CALCULATE FIRST AND
LAST ADDRESS OF GIVEN
NETWORK

Scilab code Solution 4.4 To determine First address and Last address
and Number of addresses in the block from any given classless address

1 // Note : D e t a i l s o f s c i l a b s o f t w a r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Ubuntu 1 4 . 0 4 LTS , 64 b i t
3 // S c i l a b v e r s i o n : 5 . 5 . 0 (Tested on 64 b i t v e r s i o n)
4 // Program T i t l e : C l a s s l e s s Addre s s ing : To de t e rmine

F i r s t addre s s , Last a d d r e s s and Number o f
a d d r e s s e s i n the b l o c k from any g i v e n c l a s s l e s s
a d d r e s s .

5

6 clear ;

7 clc ;

8 ip1 =input(’ Enter the 1 s t pa r t o f i p : ’)
9 ip2 =input(’ Enter the 2nd pa r t o f i p : ’)

10 ip3 =input(’ Enter the 3 rd pa r t o f i p : ’)
11 ip4 =input(’ Enter the 4 th pa r t o f i p : ’)
12 n =8;

20

13 a3 = dec2bin (ip1 , n) ;

14 a2 = dec2bin (ip2 , n) ;

15 a1 = dec2bin (ip3 , n) ;

16 a0 = dec2bin (ip4 , n) ;

17

18 mask =input(’ Enter the p r e f i x l e n g t h / CIDR : ’);
19

20 num_of_zeros =32 - mask ;

21 a = a3 + a2 + a1 + a0 ;

22 p1 = strsplit (a , mask) ;

23 p = p1 (1) ;

24 for i = 1: num_of_zeros

25 p=p+ ’ 0 ’ ;

26 end

27 b = strsplit (p ,[8 16 24]);

28 b3 = bin2dec (b (1)) ;

29 b2 = bin2dec (b (2)) ;

30 b1 = bin2dec (b (3)) ;

31 b0 = bin2dec (b (4)) ;

32

33 printf (”\n a) Dotted Decimal n o t a t i o n o f f i r s t
a d d r e s s : %d . %d . %d . %d / %d” ,b3 , b2 ,

b1 , b0 ,mask) ;

34

35 num_of_ones =32 - mask ;

36 a = a3 + a2 + a1 + a0 ;

37 p1 = strsplit (a , mask) ;

38 p = p1 (1) ;

39 for i = 1: num_of_ones

40 p=p+ ’ 1 ’ ;

41 end

42 b = strsplit (p ,[8 16 24]);

43 b3 = bin2dec (b (1)) ;

44 b2 = bin2dec (b (2)) ;

45 b1 = bin2dec (b (3)) ;

46 b0 = bin2dec (b (4)) ;

47

48 printf (”\n b) Dotted Decimal n o t a t i o n o f l a s t

21

a d d r e s s : %d . %d . %d . %d / %d” ,b3 , b2 ,

b1 , b0 ,mask) ;

49

50 num_of_addresses = 2^(32 - mask);

51 printf (”\n c) The number a d d r e s s e s i s %d . ” ,

num_of_addresses) ;

52

53

54 // //INPUT
55 // Enter the 1 s t pa r t o f i p : 167
56 // Enter the 2nd pa r t o f i p : 199
57 // Enter the 3 rd pa r t o f i p : 170
58 // Enter the 4 th pa r t o f i p : 82
59 // Enter the p r e f i x l e n g t h / CIDR : 2 7
60 //
61 //OUTPUT
62 //
63 // a) Dotted Decimal n o t a t i o n o f f i r s t a d d r e s s :

167 . 199 . 170 . 64 / 27
64 //b) Dotted Decimal n o t a t i o n o f l a s t a d d r e s s : 167

. 199 . 170 . 95 / 27
65 // c) The number a d d r e s s e s i s 32 .

22

Figure 4.1: To determine First address and Last address and Number of
addresses in the block from any given classless address

Figure 4.2: To determine First address and Last address and Number of
addresses in the block from any given classless address

23

Experiment: 5

DESIGN OF SUBNET IN
CLASSFUL IP ADDRESS

Scilab code Solution 5.5 To determine the Class and first and last ad-
dress of the class Number of networks and Number of hosts for a given
classful address

1 // Note : D e t a i l s o f s c i l a b s o f t w a r e v e r s i o n and OS
v e r s i o n used :

2 // Tested on OS : Ubuntu 1 4 . 0 4 LTS , 64 b i t
3 // S c i l a b v e r s i o n : 5 . 5 . 0 (Tested on 64 b i t v e r s i o n)
4 // Program T i t l e : C l a s s f u l a d d r e s s i n g : To de t e rmine

the Class , 1 s t & l a s t a d d r e s s o f the c l a s s , Number
o f networks and Number o f h o s t s i n the networks

from any g i v e n c l a s s f u l a d d r e s s .
5 clear ;

6 clc ;

7 ip1 =input(’ Enter the 1 s t pa r t o f i p : ’)
8 ip2 =input(’ Enter the 2nd pa r t o f i p : ’)
9 ip3 =input(’ Enter the 3 rd pa r t o f i p : ’)

10 ip4 =input(’ Enter the 4 th pa r t o f i p : ’)
11 printf (” Dotted Decimal n o t a t i o n o f the IP a d d r e s s

i s : %d . %d . %d . %d\n” ,ip1 ,ip2 ,ip3 ,ip4) ;

12

24

13 q=ip1;

14 n=0;

15 i=0;

16 if (q >=0 & q < 127) then

17 n=8;

18 i=1;

19 disp(”The f i r s t byte i s between 0 and 1 2 7 .
T h e r e f o r e t h i s i s a C l a s s A a d d r e s s . ”);

20 printf (” Network i d : %d ” ,ip1) ;

21 printf (”\nHost i d : %d .%d .%d” ,ip2 ,ip3 ,ip4) ;

22 printf (”\ n S t a r t a d d r e s s : 0 . 0 . 0 . 0 ”);
23 printf (”\nEnd a d d r e s s : 1 2 7 . 2 5 5 . 2 5 5 . 2 5 5 ”);
24 elseif q==127 then

25 n=8;

26 i=1;

27 printf (” Network i d : %d ” ,ip1) ;

28 printf (”\nHost i d : %d .%d .%d” ,ip2 ,ip3 ,ip4) ;

29 disp(”The f i r s t byte i s 1 2 7 . T h e r e f o r e i t i s a
C l a s s A a d d r e s s . This i s used f o r Loopback
a d d r e s s e s . ”);

30 printf (”\ n S t a r t a d d r e s s : 0 . 0 . 0 . 0 ”);
31 printf (”\nEnd a d d r e s s : 1 2 7 . 2 5 5 . 2 5 5 . 2 5 5 ”);
32 elseif (q >=128 & q <=191) then

33 n=16;

34 i=2;

35 disp(”The f i r s t byte i s between 128 and 1 9 1 .
T h e r e f o r e t h i s i s a C l a s s B a d d r e s s . ”);

36 printf (” Network i d : %d .%d” ,ip1 ,ip2) ;

37 printf (”\nHost i d : %d .%d” ,ip3 ,ip4) ;

38 printf (”\ n S t a r t a d d r e s s : 1 2 8 . 0 . 0 . 0 ”);
39 printf (”\nEnd a d d r e s s : 1 9 1 . 2 5 5 . 2 5 5 . 2 5 5 ”);
40 elseif (q >=192 & q <=223) then

41 n=24;

42 i=3;

43 disp(”The f i r s t byte i s between 192 and 2 2 3 .
T h e r e f o r e t h i s i s a C l a s s C a d d r e s s . ”);

44 printf (” Network i d : %d .%d .%d ” ,ip1 ,ip2 ,ip3) ;

45 printf (”\nHost i d : %d”,ip4) ;

25

46 printf (”\ n S t a r t a d d r e s s : 1 9 2 . 0 . 0 . 0 ”);
47 printf (”\nEnd a d d r e s s : 2 2 3 . 2 5 5 . 2 5 5 . 2 5 5 ”);
48 elseif (q >=224 & q <=239) then

49 disp(”The f i r s t byte i s between 224 and 2 3 9 .
T h e r e f o r e t h i s i s a C l a s s D a d d r e s s . ”);

50 printf (”\ n S t a r t a d d r e s s : 2 2 4 . 0 . 0 . 0 ”);
51 printf (”\nEnd a d d r e s s : 2 3 9 . 2 5 5 . 2 5 5 . 2 5 5 ”);
52 elseif (q >=240 & q <=255) then

53 disp(”The f i r s t byte i s between 240 and 2 5 5 .
T h e r e f o r e t h i s i s a C l a s s E a d d r e s s . ”);

54 printf (”\ n S t a r t a d d r e s s : 2 4 0 . 0 . 0 . 0 ”);
55 printf (”\nEnd a d d r e s s : 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5 ”);
56 end

57

58

59 if n~=0 then

60 printf (”\nNumber o f Networks %d” ,(2^(n-i))) ;

61 printf (”\nNumber o f Hosts %d” ,(2^(32-n)) -2) ;

62 end

63

64

65 //INPUT
66 //
67 // Enter the 1 s t pa r t o f i p : 172
68 // Enter the 2nd pa r t o f i p : 16
69 // Enter the 3 rd pa r t o f i p : 0
70 // Enter the 4 th pa r t o f i p : 1
71 //
72 //OUTPUT
73 //
74 // Dotted Decimal n o t a t i o n o f the IP a d d r e s s i s :

172 . 16 . 0 . 1
75 //The f i r s t byte i s between 128 and 1 9 1 . T h e r e f o r e

t h i s i s a C l a s s B a d d r e s s .
76 // Network i d : 1 7 2 . 1 6
77 // Host i d : 0 . 1
78 // S t a r t a d d r e s s : 1 2 8 . 0 . 0 . 0
79 //End a d d r e s s : 1 9 1 . 2 5 5 . 2 5 5 . 2 5 5

26

Figure 5.1: To determine the Class and first and last address of the class
Number of networks and Number of hosts for a given classful address

80 //Number o f Networks 16384
81 //Number o f Hosts 65534
82 //

27

Figure 5.2: To determine the Class and first and last address of the class
Number of networks and Number of hosts for a given classful address

28

	
	HAMMING CODE
	IP CHECKSUM
	SHORTEST PATH DISTANCE ALGORITHM
	CALCULATE FIRST AND LAST ADDRESS OF GIVEN NETWORK
	DESIGN OF SUBNET IN CLASSFUL IP ADDRESS

