
Scilab Manual for
Simulation Lab

by Dr Piratla Srihari
Electronics and Telecommunication

Engineering
Geethanjali College Of Engineering And

Technology1

Solutions provided by
Dr Piratla Srihari

Electronics and Telecommunication Engineering
Geethanjali College Of Engineering And Technology

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Verification of Gibb’s Phenomenon 6

2 Verification of sampling theorem 11

3 Wave Form Synthesis 22

4 Location of Poles and Zeros of a given Transfer function in
S-plane and Z-plane 28

5 Removal of Noise from the combination of signal and noise
using Auto/Cross correlation 33

6 Verification of Physical realizability and Stability of a given
LTI system 40

7 Plotting the CDF and pdf of a Random Variable 43

8 Computation of Moments of a Random variable 46

9 Verification of Central Limit Theorem 49

10 Checking the given random Process for Stationary 56

11 Verification of Weiner-Khnichine Relation 60

12 Simulation of Gaussian Random Vectors 64

2

List of Experiments

Solution 1.0 Gibbs Phenominon 6
Solution 2.0 Instantaneous Sampling 11
Solution 2.1 Natural sampling 13
Solution 2.2 Flat Top sampling 19
Solution 3.0 Staircase waveform 22
Solution 3.1 Triangular Pulse 24
Solution 4.0 SPlane . 28
Solution 4.1 Zplane . 29
Solution 5.0 Noise Removal for sequence 33
Solution 5.1 Noise Removal for signal 35
Solution 6.0 Causality and Stability 40
Solution 7.0 CDF and pdf . 43
Solution 8.0 Moments Discrete 46
Solution 8.1 Moments Continuous 47
Solution 9.0 Central Identical 49
Solution 9.1 Central Non Identical 51
Solution 10.0 Stationarity . 56
Solution 11.0 Wiener Khinchine Theorem 60
Solution 12.0 Gaussian . 64

3

List of Figures

1.1 Gibbs Phenominon . 7
1.2 Gibbs Phenominon . 8
1.3 Gibbs Phenominon . 10
1.4 Gibbs Phenominon . 10

2.1 Instantaneous Sampling . 13
2.2 Instantaneous Sampling . 14
2.3 Instantaneous Sampling . 14
2.4 Instantaneous Sampling . 15
2.5 Natural sampling . 17
2.6 Natural sampling . 18
2.7 Flat Top sampling . 21
2.8 Flat Top sampling . 21

3.1 Staircase waveform . 24
3.2 Staircase waveform . 24
3.3 Triangular Pulse . 26
3.4 Triangular Pulse . 27

4.1 SPlane . 30
4.2 Zplane . 32

5.1 Noise Removal for sequence 35
5.2 Noise Removal for signal . 37
5.3 Noise Removal for signal . 38
5.4 Noise Removal for signal . 38
5.5 Noise Removal for signal . 39

6.1 Causality and Stability . 42
6.2 Causality and Stability . 42

4

7.1 CDF and pdf . 45
7.2 CDF and pdf . 45

8.1 Moments Discrete . 47
8.2 Moments Continuous . 48

9.1 Central Identical . 51
9.2 Central Identical . 52
9.3 Central Non Identical . 54
9.4 Central Non Identical . 55

10.1 Stationarity . 58
10.2 Stationarity . 59
10.3 Stationarity . 59

11.1 Wiener Khinchine Theorem 62
11.2 Wiener Khinchine Theorem 63

12.1 Gaussian . 67
12.2 Gaussian . 67

5

Experiment: 1

Verification of Gibb’s
Phenomenon

Scilab code Solution 1.0 Gibbs Phenominon

1 // V e r i f i c a t i o n o f Gibb ’ s Phenomenon
2 // Approximat ion o f symmetr ic r e c t a n g u l a r pu l s e

d e f i n e d as f (t)= 1 f o r 0<t<p i ; −1 f o r pi<t<2p i
u s i n g a sum o f s i n u s o i d s

3 // f (t)=s i n t +(1/3) s i n 3 t +(1/5) s i n 5 t + . . .
4 //Windows 10
5 // S c i l a b 6 . 1 . 0
6 clear

7 clc

8 fs=input(’ Enter the sampl ing f r e qu en cy : ’)
9 T=input(’ Enter the du r a t i on ove r which the f (t) i s

to be p l o t t e d : ’)
10 t=0:T/fs:T;

11 p=zeros(1,length(t));

12 q=p;

6

Figure 1.1: Gibbs Phenominon

7

Figure 1.2: Gibbs Phenominon

8

13 n=input(’ Enter the number o f s i n u s o i d s : ’)
14 // This l oop g e n e r a t e s the symmetr ic r e c g t a n g u l a r

pu l s e
15 for i=1: floor(length(t)/2)

16 p(i)=1;

17 p(i+floor((length(t)/2)))=-1;

18 end

19 // This l oop g e n e r a t e s the approx imat ion o f the
symmetr ic r e c t a n g u l a r pu l s e

20 // u s i n g a s e t o f mutua l ly o r t h o gona l s i n u s o i d a l
f u n c t i o n s

21 for i=0:n-1

22 k=1/(2*i+1);

23 for j=1: length(t)

24 q(j)=(q(j)+(4/ %pi)*k*sin ((1/k)*t(j)));

25 end

26 end

27 plot(t,p, ’ r ’ ,t,q, ’ k ’ , ’ l i n ew i d t h ’ ,3)
28 xgrid

29 mtlb_axis ([0 max(t) min(p)-1 max(p)+1])

30 xtitle(”Approxiamtion o f Symmetric Pu l s e u s i n g
s i n u s o i d s ”,”Time”,”Amplitude ”)

31 xstring(t(floor(length(t)/2)),p(floor(length(t)/2))

,[” Po int o f D i s c o n t i n u i t y ”])
32 legend ([” Rec tangu l a r Pu l s e ”,” S i n u s o i d a l

Approximat ion ”])
33

34

35 // output t e s t c a s e
36 // sampl ing f r e qu en cy : 1 0 00
37 // du r a t i on ove r which the f (t) i s to be p l o t t e d : 2∗

%pi
38 // number o f s i n u s o i d s : 3
39

40 // output t e s t c a s e
41 // sampl ing f r e qu en cy : 1 0 00
42 // du r a t i on ove r which the f (t) i s to be p l o t t e d : 2∗

%pi

9

Figure 1.3: Gibbs Phenominon

Figure 1.4: Gibbs Phenominon

43 // number o f s i n u s o i d s : 5 0

10

Experiment: 2

Verification of sampling
theorem

Scilab code Solution 2.0 Instantaneous Sampling

1 // V e r i f i c a t i o n o f sampl ing Theorem
2 // This program v e r i f i e s Sampl ing Theorem f o r s i n (2 0 .

p i . t) under i n s t a n t a n e ou s sampl ing
3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 t1=input(’ Enter the l owe r l i m i t o f t ime a x i s : ’)
8 t2=input(’ Enter the upper l i m i t o f t ime a x i s : ’)
9 s=input(’ Enter the s pa c i n g between the ad j a c en t

va lu e o f t ime a x i s : ’)
10 f=input(’ Enter the baseband s i g n a l f r e qu en cy : ’)
11 t=t1:s:t2;

12 x=sin(2*%pi*f*t);

13 s1=zeros(1,length(t));

14 n=input(’ Enter the i n t e g e r which d e c i d e s the
sampl ing f r e qu en cy : ’)

15 // Genera t i on o f sampl ing s i g n a l
16 for i=1: length(t)

11

17 if n*i<= length(t)

18 s1(n*i)=1;

19 end

20 end

21 // Genera t i on o f Sampled S i g n a l
22 s11=s1.*x;

23 // Re c on s t r u c t i o n F i l t e r
24 RC =1/(2* %pi*f);

25 h=(1/RC)*exp(-t/RC);

26 // S i g n a l r e c o n s t r u c t i o n
27 y=conv(h,conv(h,s11));

28 subplot (4,1,1)

29 plot(t,x, ’ l i n ew i d t h ’ ,2)
30 xgrid

31 xtitle(”Baseband s i g n a l o f f r qu en cy 10Hz”,”Time”,”
Amplitude ”)

32 legend(” S i g n a l to be sampled ” ,3)
33 subplot (4,1,2)

34 xset(” t h i c k n e s s ” ,2)
35 plot2d3(t,s1,style =-2)

36 xtitle(” Sampl ing S i g n a l ”)
37 subplot (4,1,3)

38 xset(” t h i c k n e s s ” ,2)
39 plot2d3(t,s11 ,style =-2)

40 xtitle(”Sampled S i g n a l ”)
41 subplot (4,1,4)

42 plot(t,y(1: length(t))/length(y), ’ l i n ew i d t h ’ ,2)
43 xtitle(” S i g n a l at the output o f the r e c o n s t r u c t i o n

F i l t e r ”,”Time”,”Amplitude ”)
44 legend(”Recovered S i g n a l ” ,3)
45

46

47 // output Test c a s e
48 // l owe r l i m i t o f t ime a x i s : 0
49 // upper l i m i t o f t ime a x i s : 0 . 2
50 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
51 // baseband s i g n a l f r e qu en cy : 10

12

Figure 2.1: Instantaneous Sampling

52 // i n t e g e r which d e c i d e s the sampl ing f r e qu en cy : 10
53

54 // output Test c a s e
55 // l owe r l i m i t o f t ime a x i s : 0
56 // upper l i m i t o f t ime a x i s : 0 . 2
57 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
58 // baseband s i g n a l f r e qu en cy : 10
59 // i n t e g e r which d e c i d e s the sampl ing f r e qu en cy : 5

Scilab code Solution 2.1 Natural sampling

1 // This program g e n e r a t e s the n a t u r a l l y sampled
v e r s i o n o f s i n (2 0 . p i . t) and s imu l a t e s i t s

13

Figure 2.2: Instantaneous Sampling

Figure 2.3: Instantaneous Sampling

14

Figure 2.4: Instantaneous Sampling

15

r e c o v e r y from the sampled v e r s i o n //Windows 10
2 // S c i l a b 6 . 1 . 0
3 clear

4 clc

5 t1=input(’ Enter the l owe r l i m i t o f t ime a x i s : ’)
6 t2=input(’ Enter the upper l i m i t o f t ime a x i s : ’)
7 s=input(’ Enter the s pa c i n g between the ad j a c en t

va lu e o f t ime a x i s : ’)
8 t=t1:s:t2;

9 t1=ones(1,length(t));

10 f=input(’ Enter the baseband s i g n a l f r e qu en cy : ’)
11 x=sin(2*%pi*f*t);

12 n=input(’ Enter the i n t e g e r which d e c i d e s the width
o f the pu l s e : ’)

13 sa=[0 ones(1,n) zeros(1,n)]

14 // Genera t i on o f Sampl ing s i g n a l which i s a
r e c t a n g u l a r Pu l s e Tra in

15 while length(sa)<=length(t)

16 sa=[sa ones(1,n) zeros(1,n)]

17 end

18 sa(length(t)+1: length(sa))=[];

19 // Genera t i on o f sampled S i g n a l
20 NAT=sa.*x;

21 // Re c on s t r u c t i o n F i l t e r
22 RC =1/(2* %pi*f);

23 h=(1/RC)*exp(-t/RC);

24 // S i g n a l r e c o n s t r u c t i o n
25 y=conv(h,conv(h,NAT));

26 subplot (4,1,1)

27 plot(t,x)

28 plot(t,x, ’ l i n ew i d t h ’ ,3)
29 xgrid

30 xtitle(”Baseband s i g n a l o f f r qu en cy 10Hz (to be
Sampled) ”,”Time”,”Amplitude ”)

31 subplot (4,1,2)

32 plot(t,sa, ’ l i n ew i d t h ’ ,3)
33 xgrid

34 xtitle(” Rec tangu l a r Pu l s e Tra in (Sampl ing S i g n a l) ”,”

16

Figure 2.5: Natural sampling

Time”,”Amplitude ”)
35 subplot (4,1,3)

36 plot(t,NAT , ’ l i n ew i d t h ’ ,3)
37 xgrid

38 xtitle(” Sampled S i g n a l under Natura l Sampl ing ”,”
Time”,”Amplitude ”)

39 subplot (4,1,4)

40 plot(t,y(1: length(t))/length(y), ’ l i n ew i d t h ’ ,2)
41 xgrid

42 xtitle(”Recovered S i g n a l ”,”Time”,”Amplitude ”)
43

44

45 // Te s t c a s e
46 // l owe r l i m i t o f t ime a x i s : 0
47 // upper l i m i t o f t ime a x i s : 0 . 2
48 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
49 // baseband s i g n a l f r e qu en cy : 10
50 // i n t e g e r which d e c i d e s the width o f the pu l s e : 4

17

Figure 2.6: Natural sampling

18

Scilab code Solution 2.2 Flat Top sampling

1 // This program g e n e r a t e s the FlatTop sampled v e r s i o n
o f s i n (2 0 . p i . t) and s imu l a t e s i t s r e c o v e r y from
the sampled v e r s i o n

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 t1=input(’ Enter the l owe r l i m i t o f t ime a x i s : ’)
7 t2=input(’ Enter the upper l i m i t o f t ime a x i s : ’)
8 s=input(’ Enter the s pa c i n g between the ad j a c en t

va lu e o f t ime a x i s : ’)
9 t=t1:s:t2

10 f=input(’ Enter the baseband s i g n a l f r e qu en cy : ’)
11 x=sin(2*%pi*f*t);

12 n=input(’ Enter the i n t e g e r which d e c i d e s the width
o f the pu l s e : ’)

13 sa=[0 ones(1,n) zeros(1,n)]

14 // Genera t i on o f r e c t a n g u l a r Pu l s e Tra in which i s the
Sampl ing s i g n a l

15 while length(sa)<=length(t)

16 sa=[sa ones(1,n) zeros(1,n)]

17 end

18 sa(length(t)+1: length(sa))=[];

19 // Genera t i on o f sampled s i g n a l
20 FLA=sa.*x;

21 //Making the top o f the sample F l a t
22 for i=1: length(sa)

23 if sa(i)==1

24 FLA(i+1:i+n)=FLA(i+1)

25 end

26 end

27 // Re c on s t r u c t i o n F i l t e r

19

28 RC =1/(2* %pi*f);

29 h=(1/RC)*exp(-t/RC);

30 // S i g n a l r e c o n s t r u c t i o n
31 y=conv(h,conv(h,FLA));

32 subplot (4,1,1)

33 plot(t,x, ’ l i n ew i d t h ’ ,3)
34 xgrid

35 xtitle(”Baseband s i g n a l o f f r qu en cy 10Hz (to be
sampled) ”,”Time”,”Amplitude ”)

36 subplot (4,1,2)

37 plot(t,sa, ’ l i n ew i d t h ’ ,3)
38 xgrid

39 xtitle(” Rec tangu l a r Pu l s e Tra in (Sampl ing S i g n a l) ”,”
Time”,”Amplitude ”)

40 subplot (4,1,3)

41 plot(t,FLA , ’ l i n ew i d t h ’ ,3)
42 xgrid

43 xtitle(” F l a t Top Sampled S i g n a l ”,”Time”,”Amplitude ”
)

44 subplot (4,1,4)

45 plot(t,y(1: length(t))/length(y), ’ l i n ew i d t h ’ ,3)
46 xgrid

47 xtitle(” Recovered S i g n a l ”,”Time”,”Amplitude ”)
48 // Te s t c a s e
49 // l owe r l i m i t o f t ime a x i s : 0
50 // upper l i m i t o f t ime a x i s : 0 . 2
51 // spa c i n g between the ad j a c en t va l u e o f t ime a x i s :

0 . 0 0 1
52 // baseband s i g n a l f r e qu en cy : 10
53 // i n t e g e r which d e c i d e s the width o f the pu l s e : 4

20

Figure 2.7: Flat Top sampling

Figure 2.8: Flat Top sampling

21

Experiment: 3

Wave Form Synthesis

Scilab code Solution 3.0 Staircase waveform

1 //Waveform s y n t h e s i s o f x (t)=2u (t)−3u (t−2)+2u (t−4)
2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 // P lo t o f x (t)
7 f=input(’ Enter the sampl ing f r e qu en cy : ’)
8 T=1/f;

9 L=input(’ Enter the l owe r bound f o r the t ime a x i s o f
x (t) : ’)

10 U=input(’ Enter the upper bound f o r the t ime a x i s o f
x (t) : ’)

11 t=L-1:T:U+2;

12 x=zeros(1,length(t));

13 y=x;

14 x(find(t==0):find(t==2))=2;

15 x(find(t==2):find(t==4))=-3;

16 x(find(t==4):length(t))=2;

17 // Syn t h e s i s
18 z=find(diff(x)==2);

19 y(z(1)+1: length(y))=2;

22

20 subplot (4,1,1)

21 xset(” t h i c k n e s s ” ,3)
22 plot2d2(t,x,rect=[L-1 min(x) -1 U+2 max(x)+1])

23 xtitle(”x (t) ”,” t ime ”,”Amplitude ”)
24 legend(’ 2u (t)−3u (t−2)+2u (t−4) with f =1000 ’ ,3)
25 xstring(t(find(t==1)),x(find(t==1)) ,[”2”])
26 xstring(t(find(t==3)),x(find(t==3)) ,[”−3”])
27 xstring(t(find(t==5)),x(find(t==5)) ,[”2”])
28 subplot (4,1,2)

29 xset(” t h i c k n e s s ” ,3)
30 plot2d2(t,y,rect=[L-1 min(y) U+2 max(y)+1])

31 xtitle(””,” t ime ”,”Amplitude ”)
32 legend(’ The F i r s t Con s t i t u en t Step Funct ion ’ ,2)
33 xstring(t(find(t==1)),x(find(t==1)) ,[”2”])
34 y=y-y;

35 z=find(diff(x)==-5);

36 y(z(1)+1: length(y))=-5;

37 subplot (4,1,3)

38 xset(” t h i c k n e s s ” ,3)
39 plot2d2(t,y,rect=[L-1 min(y) -1 U+2 max(y)])

40 xtitle(””,” t ime ”,”Amplitude ”)
41 legend(’ The Second Con s t i t u en t Step Funct ion ’)
42 xstring(t(find(t==2)),x(find(t==2)) ,[”−5”])
43 y=y-y;

44 z=find(diff(x)==5);

45 y(z(1)+1: length(y))=5;

46 subplot (4,1,4)

47 xset(” t h i c k n e s s ” ,3)
48 plot2d2(t,y,rect=[L-1 min(y) U+2 max(y)+1])

49 xtitle(””,” t ime ”,”Amplitude ”)
50 legend(’ The Third Con s t i t u en t Step Funct ion ’ ,2)
51 xstring(t(find(t==4)),x(find(t==4)) ,[”5”])
52

53 // output t e s t c a s e
54 // sampl ing f r e qu en cy 1000
55 // l owe r bound f o r the t ime a x i s o f x (t) 0
56 // upper bound f o r the t ime a x i s o f x (t) 5

23

Figure 3.1: Staircase waveform

Figure 3.2: Staircase waveform

Scilab code Solution 3.1 Triangular Pulse

1 //Waveform s y n t h e s i s o f x (t)=r (t)−2r (t−1)+r (t−2)
2 //Windows 10

24

3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 f=input(’ Enter the sampl ing f r e qu en cy : ’)
7 T=1/f;

8 U=input(’ Enter the upper bound f o r the t ime a x i s : ’)
9 t=0:T:U;

10 // F ind ing the f i r s t Con s t i t u en t Ramp
11 x=t;

12 // F ind ing the second c o n s t i t u e n t Ramp
13 y=zeros(1,length(t));

14 z=y;

15 i=find(t==1);

16 j=length(i:length(t));

17 y(i:i+j-1) =2*x(1:j)

18 // F ind ing the t h i r d c o n s t i t u e n t Ramp
19 i=find(t==2);

20 j=length(i:length(t));

21 z(i:i+j-1)=x(1:j);

22 subplot (2,2,1)

23 xset(” t h i c k n e s s ” ,2)
24 plot2d(t,x-y+z,rect =[0 0 U 1])

25 xtitle(’ x (t)=r (t)−2r (t−1)+r (t−2) with f =10 and U=3 ’
, ’ Time ’ , ’ Amplitude ’)

26 legend(’ x (t) ’)
27 xgrid

28 subplot (2,2,2)

29 xset(” t h i c k n e s s ” ,2)
30 plot2d(t,x,rect =[0 0 U 1])

31 xtitle(’ F i r s t c o n s t i t u e n t ramp s i g n a l ’ , ’ Time ’ , ’
Amplitude ’)

32 legend(’ r (t) ’)
33 xgrid

34 subplot (2,2,3)

35 xset(” t h i c k n e s s ” ,2)
36 plot2d(t,-y,rect =[0 min(-y) U max(y)])

37 xtitle(’ Second c o n s t i t u e n t ramp s i g n a l ’ , ’ Time ’ , ’
Amplitude ’)

25

Figure 3.3: Triangular Pulse

38 legend(’−2r (t−1) ’)
39 xgrid

40 subplot (2,2,4)

41 xset(” t h i c k n e s s ” ,2)
42 plot2d(t,z,rect =[0 0 U 1])

43 xtitle(’ Third c o n s t i t u e n t ramp s i g n a l ’ , ’ Time ’ , ’
Amplitude ’)

44 legend(’ r (t−2) ’ ,3)
45 xgrid

46 // output Test c a s e
47 // sampl ing f r e qu en cy 10
48 // upper bound f o r the t ime a x i s 3

26

Figure 3.4: Triangular Pulse

27

Experiment: 4

Location of Poles and Zeros of
a given Transfer function in
S-plane and Z-plane

Scilab code Solution 4.0 SPlane

1 // This program f i n d s the p o l e s and z e r o s o f H(s)=(s
ˆ2+3∗ s+4) /(s ˆ2+3∗ s +12) and g i v e s the po le−z e r o
p l o t i n S−Plane

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=poly ([4 3 1],” s ”,” c o e f f ”)
7 b=poly ([12 3 1],” s ”,” c o e f f ”)
8 z=roots(a);

9 p=roots(b);

10 disp(’ The p o l e s o f the g i v en H(s) a r e ’)
11 disp(p)

12 disp(’ The z e r o s o f the g i v en H(s) a r e ’)
13 disp(z)

14 h=syslin(’ c ’ , a/b)

15 disp(’ The T r an s f e r Funct ion i s H(s)= ’ ,h)

28

16 plzr(h)

17 title(’ Pole−Zero p l o t o f H(s)=(s ˆ2+3∗ s+4) /(s ˆ2+3∗ s
+12) ’)

18

19 // output Te s t c a s e
20 // ”The p o l e s o f the g i v en H(s) a r e ”
21 //−1.5 + 3 . 122499 i
22 //−1.5 − 3 . 122499 i
23 // ”The z e r o s o f the g i v en H(s) a r e ”
24 //−1.5 + 1 . 3228757 i
25 //−1.5 − 1 . 3228757 i
26 // ”The Tran s f e r Funct ion i s H(s)=”
27 // 4 +3s + s
28 //−−−−−−−−−−
29 // 12 +3s + s

Scilab code Solution 4.1 Zplane

1 // This program f i n d s the p o l e s and z e r o s o f H(z)=z
ˆ2/(z ˆ3+2. zˆ2−z−2) and g i v e s the po le−z e r o p l o t
i n Z−Plane

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=poly ([0 0 1],” z ”,” c o e f f ”)
7 b=poly([-2 -1 2 1],” z ”,” c o e f f ”)
8 z=roots(a);

9 p=roots(b);

10 disp(’ The p o l e s o f the g i v en H(z) a r e ’)
11 disp(p)

12 disp(’ The z e r o s o f the g i v en H(z) a r e ’)
13 disp(z)

29

Figure 4.1: SPlane

30

14 h=syslin(’ d ’ , a/b)

15 disp(’ The T r an s f e r Funct ion i s H(z)= ’ ,h)
16 plzr(h)

17 title(’ Pole−Zero p l o t o f H(z)=z ˆ2/(z ˆ3+2. zˆ2−z−2) ’)
18

19 // output Test Case
20 // ”The p o l e s o f the g i v en H(z) a r e ”
21 // 1 . + 0 . i
22 // −2. + 0 . i
23 // −1. + 0 . i
24 // ”The z e r o s o f the g i v en H(z) a r e ”
25 // 0 . + 0 . i
26 // 0 . + 0 . i
27 // ”The Tran s f e r Funct ion i s H(z)=”
28 // z
29 // −−−−−−−−−−−−−−
30 // −2 −z +2 z + z

31

Figure 4.2: Zplane

32

Experiment: 5

Removal of Noise from the
combination of signal and noise
using Auto/Cross correlation

Scilab code Solution 5.0 Noise Removal for sequence

1 //Removal o f No i s e from the combinat i on o f d i s c r e t e
S i g n a l and n o i s e

2 // No i s e removal i s f a c i l i t a t e d u s i n g the c r o s s
c o r r e l a t i o n o f s equence p l u s No i s e and an impu l s e
t r a i n

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // F ind ing the Length o f the s equence u s i n g
Au t o c o r r e l a t i o n

8 x=input(’ Enter the s equence ’)
9 x1=x;

10 // g e n e r a t i o n o f random no i s e s equence
11 rand(’ normal ’)
12 N=rand(1,length(x));

13 y=x+N;

33

14 h=flipdim(y,2);

15 [m,n]=max(conv(y,h));

16 //Removal o f No i s e / Es t imat i on o f the S i g n a l i n the
p r e s e n c e o f No i s e

17 x1=x;

18 l=length(x);

19 c=input(’ Enter the number o f c y c l e s ’)
20 I=eye(l,l);

21 I1=I;

22 // c r e a t i n g the p e r i o d i c e x t e n s i o n s
23 for i=1:c-1

24 x=[x x1];

25 I=[I I1];

26 end

27 rand(’ normal ’)
28 q=rand(1,length(x));

29 p=x+q;

30 // c o r r e l a t i n g the s i g n a l p l u s n o i s e with an impu l s e
t r a i n

31 for i=1:l

32 y(i)=sum(p.*I(i,:));

33 end

34 //The p o s i t i o n o f the maximum va lu e o f
Au t o c o r r e l a t i o n w i l l be the l e n g t h o f the
s equence

35 disp(’ Pe r i od or l e n g t h o f the s equence x (n) i s ’ ,n)
36 disp(’ The e s t ima t e o f x (n) i s ’ ,y/c)
37 // output t e s t c a s e
38 // s equence : [1 3 5 7]
39 //number o f c y c l e s : 5 0
40 // Per i od or l e n g t h o f the s equence x (n) i s 4 .
41 //The e s t ima t e o f x (n) i s
42 // 0 . 9119912 3 . 1947049 4 . 9297445 7 . 0546042

34

Figure 5.1: Noise Removal for sequence

Scilab code Solution 5.1 Noise Removal for signal

1 //Removal o f No i s e from the combinat i on o f
s i n u s o i d a l S i g n a l p l u s n o i s e

2 // No i s e removal i s f a c i l i t a t e d u s i n g the c r o s s
c o r r e l a t i o n o f s i g n a l p l u s No i s e and an impu l s e
t r a i n

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // Genera t i on o f s i g n a l p l u s No i s e
8 f=input(’ Enter the f r e qu en cy o f the s i g n a l : ’)
9 T=1/f;

10 t=0:T/f:T;

11 x=sin(2*%pi*f*t);

12 x1=x;

13 // g e n e r a t i o n o f random no i s e
14 rand(’ normal ’)
15 N=rand(1,length(t));

16 // s i g n a l+No i s e
17 y=x+N;

18 h=flipdim(y,2);

19 // F ind ing the Per i od / l e n g t h o f a s i n u s o i d a l s i g n a l ,
mixed with No i s e

20 [m,n]=max(conv(y,h));

21 l=length(x);

22 c=input(’ Enter the number o f c y c l e s : ’)
23 I=eye(l,l);

24 I1=I;

35

25 for i=1:c-1

26 x=[x x1]

27 I=[I I1]

28 end

29 rand(’ normal ’)
30 q=rand(1,length(x))

31 p=x+q;

32 for i=1:l

33 y(i)=sum(p.*I(i,:));

34 end

35 //The p o s i t i o n o f the maximum va lu e o f
Au t o c o r r e l a t i o n w i l l be the l e n g t h o f the
s equence

36 disp(’ The l e n g t h o f the s i g n a l i s ’ ,n)
37 subplot (3,1,1)

38 xset(” t h i c k n e s s ” ,3)
39 plot2d(t,x1,rect =[0 min(x1) -1 T max(x1)])

40 xtitle(”x (t) ”,”Time”,”Amplitude ”)
41 legend(” s i n u s o i d a l s i g n a l o f f r e qu en cy 10 Hz”)
42 subplot (3,1,2)

43 xset(” t h i c k n e s s ” ,3)
44 plot2d(t,p(1: length(x1)),rect =[0 min(p) -0.5 T max(p)

])

45 xtitle(”x (t)+n (t) ”,”Time”,”Amplitude ”)
46 legend(” S i g n a l p l u s n o i s e ”)
47 subplot (3,1,3)

48 xset(” t h i c k n e s s ” ,3)
49 plot2d(t,y,rect =[0 min(y) -0.5 T max(y)])

50 xtitle(”Estmated x (t) ”,”Time”,”Amplitude ”)
51 legend(” Est imated s i n u s o i d a l s i g n a l ”)
52

53

54 // output t e s t c a s e
55 // f r e qu en cy o f the s i g n a l : 1 0
56 //number o f c y c l e s : 1 0
57 //The l e n g t h o f the s i g n a l i s : 1 1 .
58

59 // output t e s t c a s e

36

Figure 5.2: Noise Removal for signal

60 // f r e qu en cy o f the s i g n a l : 1 0
61 //number o f c y c l e s : 7 5 0
62 //The l e n g t h o f the s i g n a l : 1 1
63

64 //About the r e s u l t
65 //The rand f u n c t i o n g e n e r a t e s d i s s i m i l a r data i n

each run o f the code
66 //Hence , Re su l t w i l l vary from run to run o f the

code

37

Figure 5.3: Noise Removal for signal

Figure 5.4: Noise Removal for signal

38

Figure 5.5: Noise Removal for signal

39

Experiment: 6

Verification of Physical
realizability and Stability of a
given LTI system

Scilab code Solution 6.0 Causality and Stability

1 // Checking the g i v en D i s c r e t e LTI system f o r i t s
p h y s i c a l r e a l i z a b i l i t y and s t a b i l i t y

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=input(’ Enter the c o e f f i c i e n t s o f numerator i n the
o rd e r o f d e c r e a s i n g o rd e r o f the v a r i a b l e z : ’)

7 b=input(’ Enter the c o e f f i c i e n t s o f denominator i n
the o rd e r o f d e c r e a s i n g o rd e r o f the v a r i a b l e z : ’
)

8 p=roots(a);

9 q=roots(b);

10 i=find(abs(q) <1);

11 R1=input(’ Enter the l owe r bound o f ROC: ’)
12 R2=input(’ Enter the upper bound o f ROC: ’)
13 // Checking f o r Cau s a l i t y

40

14 //The ROC o f a c a u s a l D i s c r e t e LTI system shou ld
i n c l u d e i n f i n i t y and H(z) shou ld not have the
o rd e r o f the numerator g r e a t e r than tha t o f the
denominator

15 if length(p) <=length(q) & R2==%inf

16 ans1= ’ The system i s ’ ’ c a u s a l ’ ’ ’
17 ans2= ’ Hence , i s ’ ’ P h y s i c a l l y R e a l i z a b l e ’ ’ ’
18 disp(ans1)

19 disp(ans2)

20 else

21 ans1= ’ The system i s ’ ’ not c a u s a l ’ ’ ’
22 ans2= ’ Hence , i s ’ ’ not P h y s i c a l l y R e a l i z a b l e ’ ’ ’
23 disp(ans1)

24 disp(ans2)

25 end

26 // ch e ck i ng f o r S t a b i l i t y
27 //ROC o f a s t a b l e d i s c r e t e system f u n c t i o n shou ld

i n c l u d e the un i t c i r c l e .
28 // A c au s a l system i s s t a b l e i f a l l the p o l e s l i e

w i t h i n the un i t c i r c l e .
29 if R1 <1&R2 >1 | length(i)== length(q)

30 disp(’ System i s ’ ’ s t a b l e ’ ’ ’)
31 else

32 disp(’ System i s ’ ’ u n s t a b l e ’ ’ ’)
33 end

34

35 // output t e s t c a s e 1
36 // c o e f f i c i e n t s o f numerator i n the o rd e r o f

d e c r e a s i n g o rd e r o f the v a r i a b l e z : [1 0]
37 // c o e f f i c i e n t s o f denominator i n the o rd e r o f

d e c r e a s i n g o rd e r o f the v a r i a b l e z : [3 −4 1]
38 // l owe r bound o f ROC: 1
39 // upper bound o f ROC: %inf
40 //The system i s ’ c au sa l ’
41 //Hence , i s ’ P h y s i c a l l y R e a l i z a b l e ’
42 // System i s ’ un s tab l e ’
43

44 // output t e s t c a s e 2

41

Figure 6.1: Causality and Stability

Figure 6.2: Causality and Stability

45 // c o e f f i c i e n t s o f numerator i n the o rd e r o f
d e c r e a s i n g o rd e r o f the v a r i a b l e z : [1 0]

46 // c o e f f i c i e n t s o f denominator i n the o rd e r o f
d e c r e a s i n g o rd e r o f the v a r i a b l e z : [3 −4 1]

47 // l owe r bound o f ROC: 1/3
48 // upper bound o f ROC: 1
49 //The system i s ’ not cau sa l ’
50 //Hence , i s ’ not P h y s i c a l l y R e a l i z a b l e ’
51 // System i s ’ un s tab l e ’

42

Experiment: 7

Plotting the CDF and pdf of a
Random Variable

Scilab code Solution 7.0 CDF and pdf

1 // F ind ing the CDF and pdf o f a d i s c r e t e random
v a r i a b l e from i t s pmf

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 x=input(’ Enter the v a l u e s taken by Random Va r i a b l e : ’
)

7 p=input(’ Enter the p r o b a b i l i t i e s : ’)
8 // computat ion o f CDF va l u e s
9 for i=2: length(x)

10 p(i)=p(i)+p(i-1);

11 end

12 x1=min(x) -1:0.01: max(x)+2;

13 cdf=zeros(1,length(x1));

14 cdf(find(x1==max(x)):length(x1))=1;

15 // c r e a t i n g CDF ve c t o r
16 for i=1: length(x) -1

17 cdf(find(x1==x(i)):find(x1==x(i+1)))=p(i);

43

18 end

19 // computat ion o f pdf
20 pdf=diff(cdf);

21 pdf(length(pdf)+1)=0;

22 subplot (2,1,1)

23 xset(” t h i c k n e s s ” ,3)
24 plot2d2(x1,cdf ,rect=[min(x1) min(p) -0.5 max(x1) max(

p)+0.25])

25 a=gca();

26 a.x_location=” o r i g i n ”;
27 a.y_location=” o r i g i n ”;
28 xtitle(’ P l o t o f CDF ’ , ’ v a l u e s taken by the random

v a r i a b l e ’ , ’ Cumulat ive D i s t r i b u t i o n Funct ion ’)
29 legend(”x=[−1 1 3 5] , p=[1/2 1/8 1/8 1/4] ” ,4)
30 xstring(x1(find(x1==-1)),cdf(find(cdf ==1/2)) ,[” 0 . 5 ”

])

31 xstring(x1(find(x1==1)),cdf(find(cdf ==0.625)) ,[”
0 . 6 25 ”])

32 xstring(x1(find(x1==3)),cdf(find(cdf ==0.75)) ,[” 0 . 7 5 ”
])

33 xstring(x1(find(x1==5)),cdf(find(cdf ==1)),[”1”])
34 subplot (2,1,2)

35 xset(” t h i c k n e s s ” ,3)
36 plot2d3(x1,pdf ,rect=[min(x1) 0 max(x1) max(p)])

37 b=gca();

38 b.x_location=” o r i g i n ”;
39 b.y_location=” o r i g i n ”;
40 xtitle(’ P l o t o f pdf ’ , ’ v a l u e s taken by the random

v a r i a b l e ’ , ’ P r o b a b i l i t y Dens i ty Funct ion ’)
41 legend(” P r o b a b i l i t y Dens i ty Funct ion ”)
42 xstring(x1(find(x1==-1)),pdf(find(pdf ==1/2)) ,[” 1/2 ”

])

43 xstring(x1(find(x1==1)),pdf(find(pdf ==1/8)) ,[” 1/8 ”])
44 xstring(x1(find(x1==3)),pdf(find(pdf ==1/8)) ,[” 1/8 ”])
45 xstring(x1(find(x1==5)),pdf(find(pdf ==1/4)) ,[” 1/4 ”])
46

47 // output t e s t c a s e
48 // v a l u e s taken by Random Va r i a b l e : [−1 1 3 5]

44

Figure 7.1: CDF and pdf

Figure 7.2: CDF and pdf

49 // p r o b a b i l i t i e s : [1 / 2 1/8 1/8 1/4]
50 // I f the p r o b a b i l i t i e s a r e changed , the x s t r i n g

s t a t emen t s a r e to be mod i f i e d a c c o r d i n g l y

45

Experiment: 8

Computation of Moments of a
Random variable

Scilab code Solution 8.0 Moments Discrete

1 // Computation o f Moments o f a D i s c r e t e random
v a r i a b l e

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 x=input(’ Enter the v a l u e s taken by Random Va r i a b l e ’)
7 p=input(’ Enter the p r o b a b i l i t i e s ’)
8 // Computation f o F i r s t Moment about o r i g i n
9 M=sum(x.*p);

10 // Computation o f Second Moment about o r i g i n
11 MS=sum((x.^2).*p)

12 // Computation o f Var i ance
13 V=MS -M^2;

14 // Computation o f Skew
15 S=sum(((x-M).^3).*p);

16 // Computation o f Ku r t o s i s
17 K=sum(((x-M).^4).*p)

18 disp(’ The mean ,Mean Square va lue , va r i anc e , skew and

46

Figure 8.1: Moments Discrete

k u r t o s i s o f the g i v en random v a r i a b l e a r e
r e s p e c t i v e l y ’)

19 disp(M)

20 disp(MS)

21 disp(V)

22 disp(S)

23 disp(K)

24 // output t e s t c a s e
25 // v a l u e s taken by Random Va r i a b l e [1 2 3 4]
26 // p r o b a b i l i t i e s [1 / 4 1/4 1/4 1/4]
27 //The mean ,Mean Square va lue , va r i an c e , skew and

k u r t o s i s o f the g i v en random v a r i a b l e a r e
r e s p e c t i v e l y 2 . 5 , 7 . 5 , 1 . 2 5 ,0 2 . 5 625

Scilab code Solution 8.1 Moments Continuous

1 // computat ion o f Moments o f a c on t i nuou s random
v a r i a b l e X with d e n s i t y f (x)=x /6 , f o r 2<=x<=4;=0
e l s ewh e r e .

2 //Windows 10
3 // S c i l a b 6 . 1 . 0
4 clear

5 clc

6 a=input(’ Lower bound f o r the d e n s i t y f u n c t i o n ’)
7 b=input(’ Upper bound f o r the d e n s i t y f u n c t i o n ’)
8 // Computation o f Mean (M) o f the Random Vara i ab l e
9 M=integrate(’ x∗x/6 ’ , ’ x ’ ,a,b);

47

Figure 8.2: Moments Continuous

10 // Computation o f Mean Square va l u e (MS) o f the random
v a r i a b l e

11 MS=integrate(’ (x ˆ2) ∗x/6 ’ , ’ x ’ ,a,b);
12 // Computation o f Var i ance (V) o f the random v a r i a b l e
13 V=MS -M^2;

14 // Computation o f Skew (S) o f the random Va r i a b l e
15 S=integrate(’ ((x−M) ˆ3) ∗x/6 ’ , ’ x ’ ,a,b);
16 // computat ion o f Ku r t o s i s (K) o f the random v a r i a b l e
17 K=integrate(’ ((x−M) ˆ4) ∗x/6 ’ , ’ x ’ ,a,b);
18 mprintf(’Mean ,Mean Square va lue , Var iance , Skew and

Ku r t o s i s o f random v a r i a b l e a r e r e s p e c t i v e l y %d,
%d, %f , %f , %f ’ ,M,MS,V,S,K)

19

20 // output t e s t c a s e
21 //Lower bound f o r the d e n s i t y f u n c t i o n : 2
22 //Upper bound f o r the d e n s i t y f u n c t i o n : 4
23 //The mean ,Mean Square va lue , va r i an c e , skew and

k u r t o s i s o f random v a r i a b l e a r e r e s p e c t i v e l y
3 . 1 111111 , 10 , 0 . 3 2 09877 , //−0.0417010 ,
0 . 1 946045

48

Experiment: 9

Verification of Central Limit
Theorem

Scilab code Solution 9.0 Central Identical

1 // v e r i f i c a t i o n o f Cen t r a l L imi t Theorem f o r
independent un i f o rm ly d i s t r i b u t e d random
v a r i a b l e s

2 // Dens i ty o f sum o f n number o f independent
i d e n t i c a l l y d i s t r i b u t e d random v a r i a b l e s
approache s g au s s i a n Dens i ty i n the // l i m i t n
t ends to i n f i n i t y

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 a=input(’ Enter the l owe r bound f o r the d e n s i t y o f
the random v a r i a b l e : ’)

8 b=input(’ Enter the upper bound f o r the d e n s i t y o f
the random Va r i a b l e : ’)

9 x=a:b;

10 x1=a -2:0.01:b+2;

11 // Genera t i on o f Uniform Dens i ty
12 f=(1/(b-a))*ones(1,length(x));

49

13 f11=f;

14 f1=zeros(1,length(x1));

15 f1(find(x1==a):find(x1==b))=1/(b-a);

16 n=input(’ Enter the number o f Random v a r i a b l e s : ’)
17 // f i n d i n g the d e n s i t y o f sum o f random v a r i a b l e s
18 for i=1:n-1

19 f=conv(f,f11);

20 end

21 x11=n*a:n*b;

22 subplot (2,1,1)

23 plot(x1,f1, ’ l i n ew i d t h ’ ,3)
24 xgrid

25 xlabel(’ v a l u e s taken by the random v a r i a b l e ’)
26 ylabel(’ Unifrom Dens i ty ’)
27 title(’ Uniform Random v a r i a b l e ’)
28 legend(”Uniform d en s i t y ”)
29 mtlb_axis ([min(x1) max(x1) 0 max(f1)+0.1])

30 subplot (2,1,2)

31 plot(x11 ,f, ’ l i n ew i d t h ’ ,3)
32 xgrid

33 xlabel(’ v a l u e s taken by the Random v a r i a b l e=Sum o f
independent un i fo rm random v a r i a b l e s ’)

34 ylabel(’ Dens i ty o f sum o f independent un i fo rm random
v a r a i b a l e s ’)

35 title(’ Dens i ty o f sum o f 10 independent un i fo rm
random v a r i a b l e s ’)

36 legend(” Dens i ty o f sum o f independent random
v a r i a b l e s ”)

37 mtlb_axis ([min(x11) max(x11) 0 max(f)+0.25])

38

39 // output t e s t c a s e
40 // l owe r bound f o r the d e n s i t y o f the random v a r i a b l e

: −2
41 // upper bound f o r the d e n s i t y o f the random Va r i a b l e

: 2
42 //number o f Random v a r i a b l e s : 10

50

Figure 9.1: Central Identical

Scilab code Solution 9.1 Central Non Identical

1 // V e r i f i c a t i o n o f Cen t r a l L imi t Theorem f o r
independent un i fo rm and e xp on e n t i a l random
Va r i a b l e s

2 // Dens i ty o f sum o f n number o f i ndependent
i d e n t i c a l l y or non i d e n t i c a l l y d i s t r i b u t e d
random v a r i a b l e s approache s // g au s s i a n
Dens i ty i n the l i m i t n t ends to i n f i n i t y

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // Uniform d en s i t y
8 a=input(’ Enter the l owe r bound f o r the d e n s i t y o f

the Uniform random v a r i a b l e : ’)
9 b=input(’ Enter the upper bound f o r the d e n s i t y o f

the Uniform random Va r i a b l e : ’)
10 x=a:b;

11 U=(1/(b-a))*ones(1,length(x));

51

Figure 9.2: Central Identical

52

12 U1=U;

13 // Exponen t i a l d e n s i t y
14 k=input(’ Enter the parameter f o r the e x p on e n t i a l

random v a r i a b l e : ’)
15 E=(1/(1 - exp(-k)))*k*exp(-k*x);

16 n1=input(’ Enter the number o f Uniform random
v a r i a b l e s : ’)

17 n2=input(’ Enter the number o f Exponene t i a l random
v a r i a b l e s : ’)

18 // Dens i ty o f sum o f Uniform random Va r i a b l e s
19 for i=1:n1 -1

20 U=conv(U,U1);

21 end

22 // Dens i ty o f sum o f Uniform and Exponen t i a l random
v a r i a b l e s

23 for i=1:n2

24 U=conv(E,U)

25 end

26 x1=(n1+n2)*a:(n1+n2)*b;

27 xgrid

28 plot(x1,U, ’ l i n ew i d t h ’ ,3)
29 title(’ Dens i ty o f sum o f random v a r i a b l e s ’)
30 xlabel(’ v a l u e s taken by sum o f random v a r i a b l e s ’)
31 ylabel(’ P r o b a b i l i t y Dens i ty f u n c t i o n o f sum o f

random v a r i a b l e s ’)
32 legend(” Dens i ty o f sum o f e x p on e n t i a l and Uniform

random v a r i a b l e s ”)
33 // output t e s t c a s e
34 // l owe r bound f o r the d e n s i t y o f the Uniform random

v a r i a b l e : 0
35 // upper bound f o r the d e n s i t y o f the Uniform random

Va r i a b l e : 4
36 // parameter f o r the e x p on e n t i a l random v a r i a b l e : 1
37 //number o f Uniform random v a r i a b l e s : 10
38 //number o f Exponene t i a l random v a r i a b l e s : 10

53

Figure 9.3: Central Non Identical

54

Figure 9.4: Central Non Identical

55

Experiment: 10

Checking the given random
Process for Stationary

Scilab code Solution 10.0 Stationarity

1 // Checking th r Given random p r o c e s s f o r S t a t i o n a r i t y
2 // This program check s the random p r o c e s s x (t)=A cos (

wot+Theta) , where Theta i s a Uniform random
v a r i a b l e ove r (0 , 2 p i)

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 A=input(’ Enter the Peak o f the P ro c e s s : ’)
8 fo=input(’ Enter the va l u e o f f o : ’)
9 t=input(’ Enter the va lu e o f t ime i n s t a n t : ’)

10 k=input(’ Enter k : ’)
11 a=input(’ Enter the l owe r bound f o r t h e t a : ’)
12 b=input(’ Enter the upper bound f o r t h e t a : ’)
13 deff(’ [w]= f (t h e t a) ’ , ’w=A∗ co s (2∗%pi∗ f o ∗ t+th e t a) ’)
14 // S c i l a b ’ s i n t e g r a t e r o u t i n e t r i e s to a c h i e v e

a b s o l u t e e r r o r atmost 1e−8 and r e l a t i v e e r r o r
atmost 1e−14.

15 // I f i t i s l e s s than that , i t throws an e r r o r and

56

w i l l be d ippayed tha t ” t r y with h i g h e r //
t o l e r a n c e ’ .

16 //The f o l l o w i n g syntax f i x e s the t o l e r a n c e .
17 M=(1/(b-a))*intg(a,b,f,1e-8,1);

18 deff(’ [y]=g (th e t a) ’ , ’ y=(Aˆ2/2) ∗ co s (2∗2∗%pi∗ f o ∗ t+2∗
%pi∗ f o ∗k+2∗ t h e t a) ’);

19 a1=(1/(b-a))*intg(a,b,g,1e-8,1);

20 deff(’ [z]=h (th e t a) ’ , ’ z=(Aˆ2/2) ∗ co s (2∗%pi∗ f o ∗k) ’);
21 a2=(1/(b-a))*intg(a,b,h);

22 R=a1+a2;

23 disp(”The mean and the Au t o c o r r e l a t i o n o f the
p r o c e s s a r e r e s p e c t i v e l y ”)

24 disp(M)

25 disp(”and”)
26 disp(R)

27

28 // output t e s t c a s e
29 // f o r g i v en t and k
30 //Peak o f the P ro c e s s : 1
31 // va lu e o f f o : 1
32 // va lu e o f t ime i n s t a n t : 1
33 //k : 1 . 5
34 // l owe r bound f o r t h e t a : 0
35 // upper bound f o r t h e t a : 2∗%pi
36 //The mean and the Au t o c o r r e l a t i o n o f the p r o c e s s

a r e r e s p e c t i v e l y 1 . 2 4 9D−16(=0)) and −0.5
37

38 //Change i n t and no Change i n k
39 //Peak o f the P ro c e s s : 1
40 // va lu e o f f o : 1
41 // va lu e o f t ime i n s t a n t : 2
42 // k : 1 . 5
43 // l owe r bound f o r t h e t a : 0
44 // upper bound f o r t h e t a : 2∗%pi
45 //The mean and the Au t o c o r r e l a t i o n o f the p r o c e s s

a r e r e s p e c t i v e l y 1 . 2 4 9D−16(=0)) and −0.5
46

47 // No change i n t and change i n k

57

Figure 10.1: Stationarity

48 //Peak o f the P ro c e s s : 1
49 // va lu e o f f o : 1
50 // va lu e o f t ime i n s t a n t : 2
51 // k : 2
52 // l owe r bound f o r t h e t a : 0
53 // upper bound f o r t h e t a : 2∗%pi
54 //The mean and the Au t o c o r r e l a t i o n o f the p r o c e s s

a r e r e s p e c t i v e l y 1 . 2 4 9D−16(=0) and 0 . 5
55

56 //Mean o f the p r o c e s s i s z e r o (c on s t an t) , and i s
independent o f t ime i n s t a n t o f measurement .

57 // Au t o c o r r e l a t i o n i s a f u n c t i o n o f k
58 //Hence , the g i v en p r o c e s s i s s t a t i o n a r y .

58

Figure 10.2: Stationarity

Figure 10.3: Stationarity

59

Experiment: 11

Verification of
Weiner-Khnichine Relation

Scilab code Solution 11.0 Wiener Khinchine Theorem

1 // V e r i f i c a t i o i n o f Wiener−Khnich ine r e l a t i o n f o r
the s i g n a l x (t)=s i n (3 0 . p i . t)+s i n (6 0 . p i . t)

2 // Au t o c o r r e l a t i o n f u n c t i o n and Power s p e c t r a l
Dens i ty o f a s i g n a l form a Fou r i e r t r an s f o rm pa i r

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 fs=input(’ Enter the sampl ing Frequency : ’)
8 T=input(’ Enter the du r a t i on upto which the s i g n a l i s

to be p l o t t e d : ’)
9 t=0:1/ fs:T;

10 x=sin (30* %pi*t)+sin (60* %pi*t);

11 N=input(’ Enter the DFT l eng t h : ’)
12 //making the l e n g t h o f x equa l to N
13 if length(x)<N

14 x(length(x)+1:N)=0;

15 else

16 if length(x)>N

60

17 x(N+1: length(x))=[];

18 end

19 end

20 // computat ion o f N po i n t DFT o f the s equence
21 X=fft(x);

22 f=fs*(0:N-1)/N;

23 // computat ion o f PSD = (1/N) ∗ abs (f f t) ˆ2 u s i n g the
d i r e c t e x p r e s s i o n

24 PS=(1/N)*(abs(X).^2);

25 // computat ion o f Au t o c o r r e l a t i o n f u n c t i o n o f the
s i g n a l

26 R=xcorr(x,x);

27 //making l e n g t h o f R equa l to N
28 if length(R)<N

29 R(length(R)+1:N)=0;

30 else

31 if length(R)>N

32 R(N+1: length(R))=[];

33 end

34 end

35 // computat ion o f Power S p e c t r a l Dens i ty drom
Au t o c o r r e l a t i o n Funct ion

36 PSD=fft(R);

37 subplot (2,1,1)

38 xset(” t h i c k n e s s ” ,3)
39 plot2d3(f,PS)

40 xtitle(”Power s p e c t r a l d e n s i t y computed”, ’ f r e uq en cy ’
, ’Watts /Hz ’)

41 mtlb_axis ([min(f) max(f) min(PS) max(PS)])

42 legend(”PSD=(1/N) . |X(k) | ˆ 2 ”)
43 subplot (2,1,2)

44 xset(” t h i c k n e s s ” ,3)
45 plot2d3(f,abs(PSD))

46 xtitle(”Power s p e c t r a l d e n s i t y computed from
Au t o c o r r e l a t i o n Funct ion ”, ’ f r e uq en cy ’ , ’Watts /Hz ’)

47 mtlb_axis ([min(f) max(f) min(abs(PSD)) max(abs(PSD))

])

48 legend(”PSD=Fou r i e r Transform o f Au t o c o r r e l a t i o n

61

Figure 11.1: Wiener Khinchine Theorem

Funct ion ”)
49 // sampl ing Frequency : 100
50 // du r a t i on upto which the s i g n s a l i s to be p l o t t e d :

10
51 //DFT l eng t h : 1024

62

Figure 11.2: Wiener Khinchine Theorem

63

Experiment: 12

Simulation of Gaussian
Random Vectors

Scilab code Solution 12.0 Gaussian

1 // S imu l a t i on o f g e n e r a t i o n o f B i v a r i a t e Gauss ian
random ve c t o r

2 //R and S a r e b i v a r i a t e g au s s i a n random Va r i a b l e s
which a r e to be gene ra t ed , with d e s i r e d mean ,
sandard d e v i a t i o n and // c o v a r i a n c e

3 //Windows 10
4 // S c i l a b 6 . 1 . 0
5 clear

6 clc

7 // sdR=standard d e v i a t i o n o f R
8 sdR=input(’ Enter the d e s i r e d s tandard d e v i a t i o n o f R

: ’)
9 // sdS=standard d e v i a t i o n o f S
10 sdS=input(’ Enter the d e s i r e d s tandard d e v i a t i o n o f S

: ’)
11 //mR=mean o f R
12 mR=input(’ Enter the d e s i r e d mean o f R: ’)
13 //mS=mean o f S
14 mS=input(’ Enter the d e s i r e d mean o f S : ’)

64

15 //k=c o r r e l a t i o n c o e f f i c i e n t between R and S
16 k=input(’ Enter the d e s i r e d c o r r e a l t i o n c o e f f i c i e n t

between R and S : ’)
17 M=input(’ Enter the number o f r e a l i z a t i o n s : ’)
18 G=[sdR 0;k*sdS sdS*sqrt(1-k^2)];

19 for i=1:M

20 // g e n e r a t i o n o f two s t a nda r d i z e d Gauss ian random
v a r i a b l e s P and Q

21 P=grand(1,1,” nor ” ,0,1);
22 Q=grand(1,1,” nor ” ,0,1);
23 // Trans f o rmat i on o f P and Q to the d e s i r e d mean and

c o v a r i a n c e
24 //G=[sdR 0 ; k . sdS sdS . s q r t (1−k ˆ2)]
25 // [R S] ’=G. ∗ [P Q] ’+ [mR mS] ’
26 rs=G*[P Q]’+[mR mS]’;

27 RS(:,i)=rs;

28 end

29 // v e r i f y i n g the mean o f the i n d i v i d u a l random
v a r i a b l e s R and S

30 //meanest i s the e s t ima t ed mean
31 meanestR=mean(RS(1,:));

32 meanestS=mean(RS(2,:));

33 // v e r i f y i n g the c o v a r i a n c e matr ix
34 //COV(R, S)=E(RS)−E(R) .E(S)
35 RS1(1,:)=RS(1,:)-meanestR;

36 RS1(2,:)=RS(2,:)-meanestS;

37 covest =[0 0;0 0];

38 // computat ion o f c o v a r i a n c e Matr ix [var (R) k . sdR . sdS
; k . sdR . sdS var (S)]

39 for i=1:M

40 covest=covest +(RS1(:,i)*RS1(:,i) ’)/M

41 end

42 // computat ion o f c o r r e l a t i o n c o e f f i c i e n t between R
and S

43 corcoe=covest (1,2)/ sqrt(covest (1,1)*covest (2,2));

44 disp(’ The mean o f the random v a r i a b l e R i s ’ ,meanestR
)

45 disp(’ The mean o f the random v a r i a b l e S i s ’ ,meanestS

65

)

46 disp(’ The Standard d e v i a t i o n o f R i s ’ ,sqrt(covest
(1,1)))

47 disp(’ The Standard d e v i a t i o n o f S i s ’ ,sqrt(covest
(2,2)))

48 disp(’ The c o v a r i a n c e between R and S i s ’ ,corcoe)
49

50 // output t e s t c a s e
51 // d e s i r e d s tandard d e v i a t i o n o f R: 1
52 // d e s i r e d s tandard d e v i a t i o n o f S : 1
53 // d e s i r e d mean o f R: 1
54 // d e s i r e d mean o f S : 1
55 // d e s i r e d c o r r e a l t i o n c o e f f i c i e n t between R and S :

0 . 9
56 //number o f r e a l i z a t i o n s : 2000
57

58 // Re su l t
59 //The mean o f the random v a r i a b l e R i s 0 . 9 6 6 8 127 (

a g a i n s t the d e s i r e d = 1)
60 //The mean o f the random v a r i a b l e S i s 0 . 9 7 4 8 126 (

a g a i n s t the d e s i e d =1)
61 //The Standard d e v i a t i o n o f R i s 1 . 0 2 7 6 458 (a g a i n s t

the d e s i r e d =1)
62 //The Standard d e v i a t i o n o f S i s 1 . 0 2 3 2 880 (a g a i n s t

the d e s i r e d =1)
63 //The c o v a r i a n c e between R and S i s 0 . 9 0 1 5 213 (

a g a i n s t the d e s i r e d =0.9)
64

65 // ’ grand ’ f u n c t i o n o f s c i l a b g e n e r a t e s d i s t i n c t
r e s u l t s i n d i f f e r e n t runs o f the code .

66 //Output i n each run w i l l be un ique

66

Figure 12.1: Gaussian

Figure 12.2: Gaussian

67

	
	Verification of Gibb's Phenomenon
	Verification of sampling theorem
	Wave Form Synthesis
	Location of Poles and Zeros of a given Transfer function in S-plane and Z-plane
	Removal of Noise from the combination of signal and noise using Auto/Cross correlation
	Verification of Physical realizability and Stability of a given LTI system
	Plotting the CDF and pdf of a Random Variable
	Computation of Moments of a Random variable
	Verification of Central Limit Theorem
	Checking the given random Process for Stationary
	Verification of Weiner-Khnichine Relation
	Simulation of Gaussian Random Vectors

