Scilab Manual for
Simulation Lab
by Dr Piratla Srihari
Electronics and Telecommunication
Engineering
Geethanjali College Of Engineering And
Technology?

Solutions provided by
Dr Piratla Srihari
Electronics and Telecommunication Engineering
Geethanjali College Of Engineering And Technology

February 12, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the "Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

8

9

Verification of Gibb’s Phenomenon
Verification of sampling theorem
Wave Form Synthesis

Location of Poles and Zeros of a given Transfer function in
S-plane and Z-plane

Removal of Noise from the combination of signal and noise
using Auto/Cross correlation

Verification of Physical realizability and Stability of a given
LTI system

Plotting the CDF and pdf of a Random Variable
Computation of Moments of a Random variable

Verification of Central Limit Theorem

10 Checking the given random Process for Stationary

11 Verification of Weiner-Khnichine Relation

12 Simulation of Gaussian Random Vectors

11

22

28

33

40

43

46

49

56

60

64

List of Experiments

Solution 1.0
Solution 2.0
Solution 2.1
Solution 2.2
Solution 3.0
Solution 3.1
Solution 4.0
Solution 4.1
Solution 5.0
Solution 5.1
Solution 6.0
Solution 7.0
Solution 8.0
Solution 8.1
Solution 9.0
Solution 9.1
Solution 10.0
Solution 11.0
Solution 12.0

Gibbs Phenominon .

Instantaneous Sampling

Natural sampling . .
Flat Top sampling .
Staircase waveform .
Triangular Pulse . .
SPlane

Zplane

Noise Removal for sequence
Noise Removal for signal
Causality and Stability

CDF and pdf
Moments Discrete .
Moments Continuous
Central Identical . .
Central Non Identical
Stationarity

Wiener Khinchine Theorem

Gaussian

11
13
19
22
24
28
29
33
35
40
43
46
47
49
o1
56
60
64

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
9.5

6.1
6.2

Gibbs Phenominon . .
Gibbs Phenominon . .
Gibbs Phenominon . .
Gibbs Phenominon . .

Instantaneous Sampling
Instantaneous Sampling
Instantaneous Sampling
Instantaneous Sampling
Natural sampling . . .
Natural sampling . . .
Flat Top sampling . .
Flat Top sampling . .

Staircase waveform . .
Staircase waveform . .
Triangular Pulse . . .
Triangular Pulse . . .

SPlane
Zplane

Noise Removal for sequence
Noise Removal for signal
Noise Removal for signal
Noise Removal for signal
Noise Removal for signal

Causality and Stability
Causality and Stability

10
10

13
14
14
15
17
18
21
21

24
24
26
27

30
32

35
37
38
38
39

42
42

7.1
7.2

8.1
8.2

9.1
9.2
9.3
9.4

10.1
10.2
10.3

11.1
11.2

12.1
12.2

CDF and pdf
CDF and pdf

Moments Discrete
Moments Continuous

Central Identical,
Central Identical
Central Non Identical
Central Non Identical

Stationarityo
Stationarity
Stationarity

Wiener Khinchine Theorem
Wiener Khinchine Theorem

Gaussian
Gaussian

45
45

47
48

o1
52
54
55

o8
99
59

62
63

67
67

© 00 J O Ut = W

10
11
12

Experiment: 1

Verification of Gibb’s
Phenomenon

Scilab code Solution 1.0 Gibbs Phenominon

// Verification of Gibb’s Phenomenon

// Approximation of symmetric rectangular pulse
defined as f(t)= 1 for O<t<pi; —1 for pi<t<2pi
using a sum of sinusoids

//f(t)=sint+(1/3)sin3t+(1/5)sinbt +...

//Windows 10

//Scilab 6.1.0

clear

clc

fs=input (’Enter the sampling frequency:’)

T=input ('Enter the duration over which the f(t) is
to be plotted:)

t=0:T/fs:T;

p=zeros(1,length(t));

q=p;

Amplitude

15

05

-05

-5

Approxiamtion of Symmetric Pulse using sinusoids

Rectangular Pulse

Sinusoidal Approximation

—~ /N | Pairt of Dis

ontingity

05

Time

4.5

Figure 1.1: Gibbs Phenominon

6.5

=

Amplitude

05

-05

Approxiamtion of Symmetric Pulse using sinusoids

Rectangular Pulse

Sinusoidal Approximation

ontingity

IPoint of Dis:

Time

4

4.5

Figure 1.2: Gibbs Phenominon

6.5

=

13
14

15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
30

31

32

33
34
35
36
37

38
39
40
41
42

n=input ("Enter the number of sinusoids:’)
// This loop generates the symmetric recgtangular
pulse
for i=1:floor(length(t)/2)
p(i)=1;
p(i+floor ((length(t)/2)))=-1;
end
//This loop generates the approximation of the
symmetric rectangular pulse
//using a set of mutually orthogonal sinusoidal
functions
for i=0:n-1
k=1/(2%i+1);
for j=1:1length(t)
q(j)=Cq(j)+(4/%pi)*k*sin ((1/k)*xt(j)));
end
end
plot(t,p, 'r’,t,q, k’, linewidth ’,3)
xgrid
mtlb_axis ([0 max(t) min(p)-1 max(p)+1])
xtitle (" Approxiamtion of Symmetric Pulse using
sinusoids”,” Time” ,” Amplitude”)
xstring(t(floor (length(t)/2)) ,p(floor(length(t)/2))
,[7 Point of Discontinuity”])
legend ([" Rectangular Pulse”,” Sinusoidal
Approximation”])

//output test case

// sampling frequency:1000

// duration over which the f(t) is to be plotted:2x
%pi

// number of sinusoids:3

//output test case

// sampling frequency:1000

// duration over which the f(t) is to be plotted:2x
%pi

Scilab 6.1.0 Console

Enter the sampling frequency:1000

Enter the duration over which the f(t) i1s to be plotted:2*%pi

Enter the number of sinusoids:3

Figure 1.3: Gibbs Phenominon

Scilab 6.1.0 Console

Enter the sampling frequency:1000
Enter the duration over which the f(t) is to be plotted:2+%%pi

Enter the number of sinusoids:50

Figure 1.4: Gibbs Phenominon

// number of sinusoids:50

10

\)

© 00 N O U = W

10
11
12
13
14

15
16

Experiment: 2

Verification of sampling
theorem

Scilab code Solution 2.0 Instantaneous Sampling

// Verification of sampling Theorem

//This program verifies Sampling Theorem for sin (20.
pi.t) under instantaneous sampling

//Windows 10

//Scilab 6.1.0

clear

clc

ti=input (’Enter the lower limit of time axis:’)

t2=input ('Enter the upper limit of time axis:’)

s=input ("Enter the spacing between the adjacent
value of time axis:’)

f=input ("Enter the baseband signal frequency:’)

t=tl:s:t2;

x=sin (2x%pi*f*t);

sl=zeros(1,length(t));

n=input ("Enter the integer which decides the
sampling frequency:’)

//Generation of sampling signal

for i=1:1length(t)

11

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50

51

if n*xi<=length(t)
sl(n*xi)=1;

end
end
//Generation of Sampled Signal
slli=s1.%x;
//Reconstruction Filter
RC=1/(2x%pix*f);
h=(1/RC)*exp(-t/RC) ;
//Signal reconstruction
y=conv (h,conv(h,s11));
subplot (4,1,1)
plot(t,x, 'linewidth ’,2)
xgrid
xtitle (" Baseband signal of frquency 10Hz”

Amplitude”)

legend (” Signal to be sampled” ,3)
subplot(4,1,2)
xset ("thickness” ,2)
plot2d3(t,sl,style=-2)
xtitle (" Sampling Signal”)
subplot (4,1,3)
xset ("thickness” ,2)
plot2d3(t,sll,style=-2)
xtitle (" Sampled Signal”)
subplot (4,1,4)

, 7 Timeﬂ , 7

plot(t,y(1:1length(t))/length(y), linewidth ,2)
xtitle (” Signal at the output of the reconstruction

Filter” ,”Time” ,” Amplitude”)
legend (” Recovered Signal” ,3)

//output Test case
//lower limit of time axis: 0
//upper limit of time axis: 0.2

//spacing between the adjacent value of time axis:

0.001
//baseband signal frequency: 10

12

52
53
54
55
56
o7

58
59

Scilab 6.1.0 Console ?AX

Enter the lower limit of time axis: 0

Enter

Enter

Enter

Enter

the

the

the

the

upper limit of time axis: 0.2
spacing between the adjacent value of time axis:0.001
baseband signal frequency:10

integer which decides the sampling frequency:10

Figure 2.1: Instantaneous Sampling

//integer which decides the sampling frequency:

//output Test case

//lower limit of time axis: 0
//upper limit of time axis: 0.2
//spacing between the adjacent value of time axis:

0.001

//baseband signal frequency: 10

//integer which decides the sampling frequency:

Scilab code Solution 2.1 Natural sampling

//This program generates the naturally sampled
version of sin (20.pi.t)and simulates its

13

10

Enter the lower limit of time axis: 0

Enter the upper limit of time axis:0.2

Enter the spacing between the adjacent value of time axis:0.001
Enter the baseband signal frequency:10

Enter the integer which decides the sampling frequency:5

Figure 2.2: Instantaneous Sampling

Baseband signal of frquency 10Hz

L1
=
2 ; i
=0 —
E Signal to be sample
<L T T T T T T T T T T T T T
8] 0.0z 004 0.05 0.08 01 01z 0.14 0.16 0.18 0.z
Time
Sampling Signal
1
05
o
8] 0.0z 004 0.05 0.08 01 01z 0.14 0.16 0.18 0.z
Sampled Signal
1
8]
-1 T T T T T T T T T 1
o 0.0z 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18 0z
Signal at the output of the reconstruction Filter
@ -
=
2
= 0
E Recovered Signal
< T T T T T T T T T
o 0.0z 0.04 0.06 0.08 0.1 0.1z 0.14 0.16 0.18 0.z

Time

Figure 2.3: Instantaneous Sampling

14

Amplitude

Amplitude

Baseband signal of frquency 10Hz

Signal to be sample

8] 0.0z 004 0.06 o0.08 0.1 0.1z 0.14 0.16 0.18 0.z
Time
Sampling Signal
8] 0.0z 004 0.05 0.08 01 01z 0.14 0.16 0.18 0.z
Sampled Signal
T T T T T T T T T 1
o 0.0z 0.04 0.06 0.08 0.1 01z 0.14 0.16 0.18 0.z
Signal at the output of the reconstruction Filter
q Recovered Signal
T T T T T T T T T
o 0.0z 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18 0z
Time

Figure 2.4: Instantaneous Sampling

15

N O U = W N

© oo

10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34

recovery from the sampled version //Windows 10

//Scilab 6.1.0

clear

clc

tli=input (’Enter the lower limit of time axis:’)

t2=input ('Enter the upper limit of time axis:’)

s=input ("Enter the spacing between the adjacent
value of time axis:’)

t=tl:s8:t2;

tl=ones (1,length(t));

f=input ("Enter the baseband signal frequency:’)

x=sin (2*xpi*xfxt);

n=input ('Enter the integer which decides the width
of the pulse:’)

sa=[0 ones(1,n) zeros(1l,n)]

// Generation of Sampling signal which is a
rectangular Pulse Train

while length(sa)<=length(t)

sa=[sa ones(l,n) zeros(1l,n)]

end

sa(length(t)+1:1length(sa))=[];

// Generation of sampled Signal

NAT=sa.*x;

//Reconstruction Filter

RC=1/(2*Ypix*f);

h=(1/RC) *exp(-t/RC) ;

//Signal reconstruction

y=conv (h, conv (h,NAT)) ;

subplot (4,1,1)

plot (t,x)

plot(t,x, 'linewidth ' ,3)

xgrid

xtitle (" Baseband signal of frquency 10Hz(to be
Sampled)” ,” Time” ,” Amplitude”)

subplot (4,1,2)

plot(t,sa, 'linewidth ' ,3)

xgrid

xtitle (" Rectangular Pulse Train(Sampling Signal)”,

16

35
36
37
38

39
40
41
42
43
44
45
46
47
48

49
50

Scilab 6.1.0 Console 2aXx

Enter the lower limit of time axis: 0

Enter the upper limit of time axis:0.2

Enter the spacing between the adjacent value of time axis:0.001

Enter the baseband signal frequency:10

Enter the integer which decides the width of the pulse:4

Figure 2.5: Natural sampling

Time” ,” Amplitude”)

subplot (4,1,3)

plot (t,NAT, 'linewidth ’,3)

xgrid

xtitle (” Sampled Signal under Natural Sampling”,
Time” ,” Amplitude”)

subplot (4,1,4)

plot(t,y(1:1length(t))/length(y), linewidth’,2)

xgrid

xtitle (" Recovered Signal”,”Time” ,” Amplitude”)

// Testcase

// lower limit of time axis: 0

//upper limit of time axis: 0.2

//spacing between the adjacent value of time axis:
0.001

// baseband signal frequency: 10

//integer which decides the width of the pulse: 4

17

Baseband signal of frquency 10Hato be Sampled)

— e

Amplitude

e N B

o0z 0.04 0.05 0.0 0.1 0.1z 014 0.18 018 0z

Time

Rectangular Pulse TrainfSampling Signal)

Amplitude

0.0z 0.04 0.05 0.08 01 0.12 014 0.18 0.18 oz

Time

Sampled Signal under Natural Sampling

Y

Amplitude

T T T T T T T L T

ooz 0.04 0.0& o.na 0.1 01z 014 018 o018 0z

Time

Recovered Signal

Amplitude

0.0z 0.04 0.05 0.08 01 0.12 014 0.18 0.18 oz

Tirma

Figure 2.6: Natural sampling

18

CO J O Ut i W N

10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27

Scilab code Solution 2.2 Flat Top sampling

//This program generates the FlatTop sampled version
of sin(20.pi.t) and simulates its recovery from
the sampled version

//Windows 10

//Scilab 6.1.0

clear

clc

ti=input ("Enter the lower limit of time axis:’)

t2=input ('Enter the upper limit of time axis:’)

s=input (’Enter the spacing between the adjacent
value of time axis:’)

t=tl:s:t2

f=input ("Enter the baseband signal frequency:’)

x=sin (2xY%pixfxt);

n=input ("Enter the integer which decides the width

of the pulse:’)

sa=[0 ones(1l,n) zeros(l,n)]

//Generation of rectangular Pulse Train which is the
Sampling signal

while length(sa)<=length(t)
sa=[sa ones(1,n) zeros(1l,n)]

end

sa(length(t)+1:1length(sa))=[];

//Generation of sampled signal

FLA=sa .*x;

//Making the top of the sample Flat

for i=1:length(sa)
if sa(i)==

FLA(i+1:i+n)=FLA(i+1)
end

end

//Reconstruction Filter

19

28
29
30
31
32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47
48
49
50
51

52
53

RC=1/(2xY%pix*f);

h=(1/RC)*exp(-t/RC);

//Signal reconstruction

y=conv (h, conv (h,FLA));

subplot (4,1,1)

plot(t,x, "linewidth ' ,3)

xgrid

xtitle (" Baseband signal of frquency 10Hz(to be
sampled)” ,” Time” ,” Amplitude”)

subplot (4,1,2)

plot(t,sa, 'linewidth ' ,3)

xgrid

xtitle (" Rectangular Pulse Train(Sampling Signal)”,”
Time” ,” Amplitude”)

subplot (4,1,3)

plot (t,FLA, 'linewidth ,3)

xgrid

xtitle(” Flat Top Sampled Signal”,”Time” ,” Amplitude”
)

subplot (4,1,4)

plot(t,y(1:length(t))/length(y), linewidth’,3)

xgrid

xtitle(” Recovered Signal”,”Time”,” Amplitude”)

// Testcase

// lower limit of time axis: 0

//upper limit of time axis: 0.2

//spacing between the adjacent value of time axis:
0.001

// baseband signal frequency: 10

//integer which decides the width of the pulse: 4

20

Enter

Enter

Enter

Enter

Enter

Amplitude Amplitude Amplitude

Amplitude

the lower limit of time axis:0
the upper limit of time axis:0.2
the spacing between the adjacent value of time axis:0.001
the baseband signal frequency:10
the integer which decides the width of the pulse:4
Figure 2.7: Flat Top sampling
Baseband signal of frquency 10H={to be sampled)
. T
0 o i
B I N SR N . S =
o 002 0.04 0.06 0.08 0.1 012 014 0.6 0.18 0.2
Time
Rectangular Pulse Train{Sampling Signal)
1
0 T et T T et T T et
] 002 0.04 0.06 0.08 0.1 012 014 0.1 0.18 0.2
Time
Flat Top Sampled Signal
— —
. '_L -{_’_ -||_‘hl
o 002 0.04 0.06 0.08 0.1 01z 014 0.18 0.18 0.2
Time
Recoverad Signal
e
—
) _4“‘,rﬂ hh\\H ’iﬂff n\\\i
o 002 0.04 0.06 0.08 0.1 012 014 0.6 0.18 0.2

Tirma

Figure 2.8: Flat Top sampling

21

© 00 J O U i W N

10

11
12
13
14
15
16
17
18
19

Experiment: 3

Wave Form Synthesis

Scilab code Solution 3.0 Staircase waveform

//Waveform synthesis of x(t)=2u(t)—3u(t—2)4+2u(t—4)

//Windows 10
//Scilab 6.1.0
clear

clc

//Plot of x(t)

f=input ('Enter the sampling frequency:’)

T=1/1;

L=input ("Enter the lower bound for
x(t):7")

U=input (’Enter the upper bound for
x(t):7)

t=L-1:T:U+2;

x=zeros (1,length(t));

y=x;

x(find (t==0) : find (t==2))=2;

x(find (t==2) : find (t==4))=-3;

x(find (t==4) :length(t))=2;

//Synthesis

z=find (diff (x)==2);

y(z(1)+1:1length(y))=2;

22

the time

the time

axis

axis

of

of

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

subplot (4,1,1)

xset (" thickness” ,3)

plot2d2(t,x,rect=[L-1 min(x)-1 U+2 max(x)+1])
xtitle ("x(t)”,” time” ,” Amplitude”)

legend ("2u(t)—3u(t—2)+2u(t—4) with f=1000",3)
xstring(t(find(t==1)) ,x(find(t==1)),[727])
xstring (t (find (t==3)) ,x(find (t==3)),["-3"1)
xstring (t (find (t==5)) ,x(find (t==5)),["2" 1)
subplot (4,1,2)

xset ("thickness” ,3)

plot2d2(t,y,rect=[L-1 min(y) U+2 max(y)+1])
xtitle ("7 ,”7 time” ,” Amplitude”)

legend ('The First Constituent Step Function’,2)
xstring (t (find (t==1)) ,x(find(t==1)),[72"]1)
y=y-ys

z=find (diff (x)==-5);

y(z(1)+1:1length(y))=-5;

subplot(4,1,3)

xset ("thickness” ,3)

plot2d2(t,y,rect=[L-1 min(y)-1 U+2 max(y)])
xtitle(””,” time” ,” Amplitude”)

legend ('The Second Constituent Step Function’)
xstring (t(find (t==2)) ,x(find (t==2)),["=5"1)
y=y-vys

z=find (diff (x)==5) ;

y(z(1)+1:1length(y))=5;

subplot (4,1,4)

xset (" thickness” ,3)

plot2d2(t,y,rect=[L-1 min(y) U+2 max(y)+1])
xtitle ("7 ,”time” ,” Amplitude”)

legend ('The Third Constituent Step Function’,2)
xstring(t(find(t==4)) ,x(find(t==4)),["5"])

//output test case

//sampling frequency 1000

//lower bound for the time axis of x(t) 0
//upper bound for the time axis of x(t) 5

23

Enter the sampling frequency:1000
Enter the lower bound for the time axis of x(t):0

Enter the upper bound for the time axis of x(t):5

Warninas Thic faatnra will ha narmanantlavy ramarad in @113k & 1

Figure 3.1: Staircase waveform

Figure 3.2: Staircase waveform

Scilab code Solution 3.1 Triangular Pulse

1 //Waveform synthesis of x(t)=r(t)—2r(t—1)+r(t—2)
2 //Windows 10

24

© 00 J O Ut = W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

32
33
34
35
36
37

//Scilab 6.1.0

clear

clc

f=input ("Enter the sampling frequency:’)

T=1/f;

U=input ("Enter the upper bound for the time axis:’)

t=0:T:U;

//Finding the first Constituent Ramp

X=t;

//Finding the second constituent Ramp

y=zeros (1,length(t));

zZ=y;

i=find (t==1);

j=length(i:length(t));

y(i:i+j-1)=2*x(1:j)

//Finding the third constituent Ramp

i=find (t==2);

j=length(i:length(t));

z(i:i+j-1)=x(1:3j);

subplot (2,2,1)

xset ("thickness” ,2)

plot2d(t,x-y+z,rect=[0 0 U 1])

xtitle('x(t)=r(t)—2r(t—1)+r(t—2) with f=10 and U=3’
, Time’, Amplitude ’)

legend ('x(t) ")

xgrid

subplot (2,2,2)

xset ("thickness” ,2)

plot2d(t,x,rect=[0 0 U 1])

xtitle(’First constituent ramp signal’, Time’,
Amplitude 7)

legend('r(t)’)

xgrid

subplot (2,2,3)

xset ("thickness” ,2)

plot2d(t,-y,rect=[0 min(-y) U max(y)])

xtitle (’Second constituent ramp signal’, Time’,
Amplitude)

Y

Y

25

38
39
40
41
42
43

44
45
46
47
48

Scilab 6.1.0 Console

Enter the sampling frequency:10

Enter the upper bound for the time axis:3

Figure 3.3: Triangular Pulse

legend ("—2r(t—1)")

xgrid

subplot (2,2,4)

xset ("thickness” ,2)

plot2d(t,z,rect=[0 0 U 1])

xtitle (' Third constituent ramp signal’, Time’,
Amplitude 7)

legend ('r(t—2)7",3)

xgrid

//output Test case

//sampling frequency 10

// upper bound for the time axis 3

?

26

First constituert ramp signal

=3

rit)-2rit-1)+rit-2) with f=10 and U

xit)=

-=L_d__

1l Jd. -
1
1
T

0.2 o
0

06 4 = = -

Fpnycuy

15

05

25

15

Tirme

Time

Third constitusrt ramp signal

Second constitusnt ramp signal

1 1
| | - =
1 1 1 1 1
I_d_Jd_Jd_1_1mwn
[[1 -
1 1 1 1 1
[iy By i Rl b
1 1 1 1 1
n
I=_—4=-—"=-4-4 - =
1 1 1 1 1
| 1 1 1 1
I T T T T =
o w + o =]
o o (=] =]
sprijcury
=
S
=
o

sprijcury

Time

Time

Figure 3.4: Triangular Pulse

27

Experiment: 4

Location of Poles and Zeros of
a given Transfer function in
S-plane and Z-plane

Scilab code Solution 4.0 SPlane

//This program finds the poles and zeros of H(s)=(s
"2+3xs+4) /(s 24+3xs+12) and gives the pole—zero
plot in S—Plane

// Windows 10

//Scilab 6.1.0

clear

clc

a=poly ([4 3 1],7s8”,7coeftf”)

b=poly ([12 3 1],7s”,”7coeff”)

z=roots (a);

p=roots(b);

disp(’The poles of the given H(s) are’)

disp(p)

disp(’The zeros of the given H(s) are’)

disp(z)

h=syslin(’c’, a/b)

disp(’The Transfer Function is H(s)=’,h)

28

16
17

18
19
20
21
22
23
24
25
26
27
28
29

© 00 3 O Ut = W N

— = = =
w N = O

plzr (h)
title(’Pole—Zero plot of H(s)=(s"24+3*s+4)/(s " 2+3x%s
+12)7)

//output Testcase

//”The poles of the given H(s) are”
//—1.5 + 3.122499

//—1.5 — 3.122499

//”The zeros of the given H(s) are”
/] —1.5 + 1.3228757i

//—1.5 — 1.3228757i

//"The Transfer Function is H(s)="

//4 +3s +s
//
//12 +3s +s

Scilab code Solution 4.1 Zplane

//This program finds the poles and zeros of H(z)=z
"2/(z°3+2.2"2—7z—-2) and gives the pole—zero plot
in Z—Plane

//Windows 10

//Scilab 6.1.0

clear

clc

a=poly ([0 0 1],7z”7,”7 coeff”)

b=poly([-2 -1 2 1],72z”7,”7 coeff”)

z=roots(a);

p=roots(b);

disp(’The poles of the given H(z) are’)

disp(p)

disp(’The zeros of the given H(z) are’)

disp(z)

29

Imaginary axis

Pole-Zero plot of Hisl=(s"24+3s+4)/(5" 24+3%s412)

.2

.34

b ¢ 3 Poles
¢ & & Zeros

Real axis

Figure 4.1: SPlane

30

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

h=syslin(’d’,
disp(’The Transfer Function is H(z)=",h)

plzr (h)

title ('Pole—Zero plot

a/b)

//output Test Case
//”The poles of the given H(z) are”

//

1. + 0.1

/] =2+ 0.i
/] =1+ 0.i

//” The zeros

of H(z)=2"2/(2z"3+2.2"2—2-2)")

of the given H(z)

are”

// 7The Transfer Function is H(z)="

// 0. + 0.1

// 0. + 0.1

// z

//

/] -2 -z 42z +z

31

Imaginary axis

Pole-Zero plot of Hizl=z™ 2Nz~ 3+2.2™ 2-2-2)

1 b ¢ 3 Poles
] ¢ & & Zeros
1+
0.5 o
04 =
-0.5 4
14
T T T T T T T
-2.5 -2 -1.5 -1 -0.5 4] 0.5 1 1.5

Real axis

Figure 4.2: Zplane

32

N O O = W

oo

10
11
12
13

Experiment: 5

Removal of Noise from the
combination of signal and noise
using Auto/Cross correlation

Scilab code Solution 5.0 Noise Removal for sequence

//Removal of Noise from the combination of discrete
Signal and noise

//Noise removal is facilitated using the cross
correlation of sequence plus Noise and an impulse
train

//Windows 10

//Scilab 6.1.0

clear

clc

//Finding the Length of the sequence using
Autocorrelation

x=input ('Enter the sequence’)

x1=x;

//generation of random noise sequence

rand ("'normal ’)

N=rand (1, length(x));

y=x+N;

33

14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34

35
36
37
38
39
40
41
42

h=flipdim(y,2);
[m,n]=max(conv(y,h));
//Removal of Noise/Estimation of the Signal in the
presence of Noise
x1=x;
l=length(x);
c=input ("Enter the number of cycles’)
I=eye(1,1);
I1=1;
//creating the periodic extensions
for i=1l:c-1
x=[x x1];
I=[I I1];
end
rand ("'normal ’)
g=rand (1, length(x));
p=x+q;
//correlating the signal plus noise with an impulse
train
for i=1:1
y(i)=sum(p.*I(i,:));
end
//The position of the maximum value of
Autocorrelation will be the length of the
sequence
disp(’Period or length of the sequence x(n) is’,n)
disp(’The estimate of x(n) is’,y/c)
//output test case
//sequence:[1 3 5 T]
//number of cycles:50
//Period or length of the sequence x(n) is 4.
//The estimate of x(n) is
//0.9119912 3.1947049 4.9297445 7.0546042

34

© 00 J O UL = W

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

Enter the sequence([l 3 5 7]

Enter the number of cyclesS0

Figure 5.1: Noise Removal for sequence

Scilab code Solution 5.1 Noise Removal for signal

//Removal of Noise from the combination of
sinusoidal Signal plus noise

//Noise removal is facilitated using the cross
correlation of signal plus Noise and an impulse
train

//Windows 10

//Scilab 6.1.0

clear

clc

//Generation of signal plus Noise

f=input ("Enter the frequency of the signal:’)

T=1/1;

t=0:T/f:T;

x=sin (2% Ypi*xfxt);

x1=x;

//generation of random noise

rand ("normal ’)

N=rand (1, length(t));

//signal+Noise

y=x+N;

h=flipdim(y,2);

//Finding the Period/length of a sinusoidal signal ,
mixed with Noise

[m,n]=max(conv(y,h));

l=length(x);

c=input (’Enter the number of cycles:’)

I=eye(1,1);

I1=1;

35

25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59

for i=1:c-1
x=[x x1]
I=[I I1]
end
rand ('normal ")
g=rand (1, length(x))
p=x+q;
for i=1:1
y(i)=sum(p.*I(i,:));
end
//The position of the maximum value of
Autocorrelation will be the length of the
sequence
disp(’The length of the signal is’,n)
subplot (3,1,1)
xset ("thickness” ,3)
plot2d(t,xl,rect=[0 min(x1)-1 T max(x1l)])
xtitle ("x(t)”,” Time” ,” Amplitude”)
legend (" sinusoidal signal of frequency 10 Hz")
subplot (3,1,2)
xset ("thickness” ,3)
plot2d(t,p(l:length(xl)),rect=[0 min(p)-0.5 T max(p)
D
xtitle ("x(t)4n(t)”,” Time” ,” Amplitude”)
legend (” Signal plus noise”)
subplot(3,1,3)
xset (" thickness” ,3)
plot2d(t,y,rect=[0 min(y)-0.5 T max(y)])
xtitle (" Estmated x(t)”,” Time”,” Amplitude”)
legend (" Estimated sinusoidal signal”)

//output test case

//frequency of the signal:10
//number of cycles:10

//The length of the signal is :11.

//output test case

36

60
61
62
63
64
65

66

Scilab 6.1.0 Console 2

Enter the frequency of the signal:10

Enter the number of cycles:10

"The length of the signal is"

11.

Figure 5.2: Noise Removal for signal

//frequency of the signal:10
//number of cycles:750
//The length of the signal :11

//About the result

//The rand function generates dissimilar data in
each run of the code

//Hence, Result will vary from run to run of the
code

37

Scilab 6.1.0 Console
Enter the frequency of the signal:10

Enter the number of cycles:750

"The length of the signal is"

11.
Figure 5.3: Noise Removal for signal
wit)
sinusoidal signal of frequency 10 HzJ
L
=0
£
H v
E -1
<L
n L] L] L] L] L] L] L] L] L] L]
8] 0.01 0.0z 0.03 0.04 0.0s 0.06 0.07 o0.08 0.0g 0.1
Time
st n(t)
° I_ Signal plus noise]
=
£ o
=
E
<L
L] L] L] L] L] L] L] L] | L]
o o0.01 0.0z 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
Time
Estmated x«t)
I Estimated sinusaidal signal—l
w
=
Z 04
=
£
<l
10 =
L] L] L] L] L] L] L] L] L] L]
8] 0.01 0.0z 0.03 0.04 0.0s 0.06 0.07 0.08 0.09 01
Time

Figure 5.4: Noise Removal for signal

38

w

Amplitude

Amplitude

Amplitude

ot

sinusoidal signal of frequency 10 HzJ

S00

-500

0.0z 0.0z o004 o005 0.06 0.o7 o.0s o009 01

Time

st n(t)

I — Signal plus noise]

0.0z 003 0.04 0035 0.0 0.o7 0.0g o0 01

8] 0.01
Time
Estmated x(t)
I Estimated sinusoidal signal—l
n L] L] L] L] L] L] L] L] | L]
o o0.o1 0.0z 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01

Time

Figure 5.5: Noise Removal for signal

39

S T W N

10
11
12
13

Experiment: 6

Verification of Physical
realizability and Stability of a

given LTI system

Scilab code Solution 6.0 Causality and Stability

//Checking the given Discrete LTI system for its

physical realizability and

// Windows 10
//Scilab 6.1.0
clear

clc

stability

a=input ("Enter the coefficients of numerator in the

order of decreasing order

of the variable z:’)

b=input ("Enter the coefficients of denominator in
the order of decreasing order of the variable z:

)
p=roots(a);
g=roots (b);
i=find (abs (q) <1);

Ri=input (’Enter the lower bound of ROC: ’)
R2=input ("Enter the upper bound of ROC: ’)

//Checking for Causality

40

9

14

15
16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36

37

38
39
40
41
42
43
44

//The ROC of a causal Discrete LTI system should
include infinity and H(z) should not have the
order of the numerator greater than that of the

denominator

if length(p)<=length(q) & R2==%inf

ansl="The system is ’'’'causal’’’
ans2="Hence,is ’’Physically Realizable’’’
disp(ansl)

disp(ans?2)

else
ansl='The system is’ 'not causal’’’
ans2="Hence,is ’’not Physically Realizable’’’
disp (ans1)
disp(ans2)

end

//checking for Stability
//ROC of a stable discrete system function should
include the unit circle.
// A causal system 1is stable if all the poles lie
within the unit circle.
if R1<1&R2>1 | length(i)==length(q)
disp(’System is ’’'stable’’’)
else
disp(’System is ’’“unstable’’’)
end

// output test case 1
//coefficients of numerator in the order of

decreasing order of the variable z: [1 0]
//coefficients of denominator in the order of
decreasing order of the variable z: [3 —4 1]

//lower bound of ROC: 1

//upper bound of ROC: %inf
//The system is ’causal’
//Hence ,is *Physically Realizable ’
//System is ’unstable’

//output test case 2

41

45

46

47
48
49
50
o1

Scilab 6.1.0 Consale

Enter the coefficients of numerator in the order of decreasing order of the wvariable =:[1 0]

Enter the coefficients of denominator in the order of decreas ing order of the variable =:[3 -4 1]

Scilab 6.1.0 Console

Enter the coefficients of mumerator in the order of decreas ing order of the variable =:[1 0]
Enter the coefficients of denominator in the order of decreasing order of the variable =:[2 -4 1]
Enter the lower bound of ROC:1/3

Enter the upper bound of ROC:1

Figure 6.2: Causality and Stability

//coefficients of numerator in the order of
decreasing order of the variable z: [1 0]

//coefficients of denominator in the order of
decreasing order of the variable z: [3 —4 1]

//lower bound of ROC: 1/3

//upper bound of ROC: 1

//The system 1is ’not causal’

//Hence ,is "not Physically Realizable

//System is ’unstable’

Y

42

S U W N

© 00

10

12
13
14
15
16
17

Experiment: 7

Plotting the CDF and pdf of a
Random Variable

Scilab code Solution 7.0 CDF and pdf

//Finding the CDF and pdf of a discrete random
variable from its pmf
//Windows 10
//Scilab 6.1.0
clear
clc
x=input ("Enter the values taken by Random Variable:
)
p=input ("Enter the probabilities:’)
//computation of CDF values
for i=2:length(x)
p(i)=p(i)+p(i-1);
end
x1=min(x)-1:0.01:max(x)+2;
cdf=zeros (1,length(x1));
cdf (find (x1==max(x)):length(xl))=1;
//creating CDF vector
for i=1:length(x)-1
cdf (find (x1==x(i)) :find(x1==x(i+1)))=p(i);

43

Y

18
19
20
21
22
23
24

25
26
27
28

29
30

31

32

33
34
35
36
37
38
39
40

41
42

43
44
45
46
47
48

end

//computation of pdf

pdf=diff (cdf);

pdf (length (pdf)+1)=0;

subplot(2,1,1)

xset (" thickness” ,3)

plot2d2(x1,cdf ,rect=[min(x1) min(p)-0.5 max(xl) max(
p)+0.25 1)

a=gca();

a.x_location="origin”;

a.y_location="origin”;

xtitle(’Plot of CDF’, ’values taken by the random

variable’, ’Cumulative Distribution Function’)
legend ("x=[-1 1 3 5] , p=[1/2 1/8 1/8 1/4 |”,4)
xstring(x1(find(xl1==-1)),cdf (find(cdf==1/2)),[70.5”
D

xstring (x1(find(x1==1)),cdf (find (cdf==0.625)),[”
0.62577)

xstring (x1(find (x1==3)),cdf(find(cdf==0.75)),[70.75”
D

xstring(x1(find(x1==5)),cdf (find(cdf==1)),["17])

subplot (2,1,2)

xset (" thickness” ,3)

plot2d3(x1,pdf ,rect=[min(xl) 0 max(x1l) max(p) 1)

b=gca () ;

b.x_location="origin”;

b.y_location="origin”;

xtitle ("Plot of pdf’, ’values taken by the random
variable’, ’Probability Density Function)

legend (” Probability Density Function”)

xstring (x1(find(x1==-1)) ,pdf (find (pdf==1/2)),[71/2”
D

xstring (x1(find(x1==1)) ,pdf (find (pdf==1/8)),["1/8"1)

xstring (x1(find (x1==3)),pdf (find (pdf==1/8)),["1/871)

xstring (x1(find (x1==5)),pdf (find (pdf==1/4)),[71/4"1)

//output testcase
//values taken by Random Variable:[—-1 1 3 5]

44

Scilab 6.1.0 Console

Enter the wvalues taken by Random Variable:[-1 1 3 5]

Enter the probabilities:[1/2 1/8 1/8 1/4]

Figure 7.1: CDF and pdf

rrrrrrrrr

[—— =t o rmmemmm |

Figure 7.2: CDF and pdf

49 //probabilities:[1/2 1/8 1/8 1/4]
50 // If the probabilities are changed, the xstring
statements are to be modified accordingly

45

© 00 N O U i W N

I e T T o T o S S S SO
O O UL i W N+~ O

Experiment: 8

Computation of Moments of a
Random variable

Scilab code Solution 8.0 Moments Discrete

//Computation of Moments of a Discrete random
variable

//Windows 10

//Scilab 6.1.0

clear

clc

x=input ("Enter the values taken by Random Variable)

p=input ("Enter the probabilities’)

//Computation fo First Moment about origin

M=sum(x.*p);

//Computation of Second Moment about origin

MS=sum ((x.72) .*p)

//Computation of Variance

V=MS-M"2;

//Computation of Skew

S=sum (((x-M) ."3) .*p);

//Computation of Kurtosis

K=sum (((x-M) ."~4) .*p)

disp (’The mean,Mean Square value ,variance ,skew and

46

19
20
21
22
23
24
25
26
27

© 00 J O U = W N

Enter the wvalues taken by Random Variable[l 2 3 4]

Enter the probabilities([1/4 1/4 1/4 1/4]

Figure 8.1: Moments Discrete

kurtosis of the given random variable are
respectively ’)

disp (M)

disp (MS)

disp (V)

disp (8)

disp (K)

//output testcase

// values taken by Random Variable [1 2 3 4]

// probabilities [1/4 1/4 1/4 1/4]

//The mean,Mean Square value ,variance ,skew and
kurtosis of the given random variable are
respectively 2.5 7.5, 1.25 |0 2.5625

Scilab code Solution 8.1 Moments Continuous

//computation of Moments of a continuous random

variable X with density f(x)=x/6, for 2<=x<=4;=0

elsewhere .
//Windows 10
//Scilab 6.1.0
clear
clc
a=input ("Lower bound for the density function ')
b=input ("Upper bound for the density function ’)
//Computation of Mean(M) of the Random Varaiable
M=integrate ('x*x/6",’x’,a,b);

47

10

11
12
13
14
15
16
17
18

19
20
21
22
23

lower bound for the density function2

Upper bound for the density functiond

Figure 8.2: Moments Continuous

//Computation of Mean Square value(MS) of the random
variable

MS=integrate(’(x"2)xx/6’, ’x ,a,b);

//Computation of Variance (V) of the random variable

V=MS-M"2;

//Computation of Skew(S) of the random Variable

S=integrate (' ((x-M) "3)*x/67, 'x",a,b);

//computation of Kurtosis(K)of the random variable

K=integrate (' ((x-M) "4)*x/6’,’x",a,b);

mprintf ("Mean,Mean Square value , Variance ,Skew and
Kurtosis of random variable are respectively %d,
%d, %f , %t , %t’ ,M,M8,V,S,K)

//output testcase

//Lower bound for the density function:2

//Upper bound for the density function:4

//The mean,Mean Square value ,variance ,skew and
kurtosis of random variable are respectively
3.1111111, 10, 0.3209877, //—0.0417010,
0.1946045

48

N O Ut = W

10
11
12

Experiment: 9

Verification of Central Limit
Theorem

Scilab code Solution 9.0 Central Identical

// verification of Central Limit Theorem for
independent uniformly distributed random
variables

// Density of sum of n number of independent
identically distributed random variables
approaches gaussian Density in the //limit n
tends to infinity

//Windows 10

//Scilab 6.1.0

clear

clc

a=input ("Enter the lower bound for the density of
the random variable:’)

b=input (’Enter the upper bound for the density of
the random Variable: ’)

x=a:b;

x1=a-2:0.01:b+2;

//Generation of Uniform Density

f=(1/(b-a))*ones(1,length(x));

49

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35

36

37

38

39

40

41

42

fl11=1f;

fl=zeros (1, length(x1));

fi1(find(xl==a):find(x1==b))=1/(b-a);

n=input ("Enter the number of Random variables:’)

//finding the density of sum of random variables

for i=1:n-1

f=conv(f,f11);

end

x1ll=nx*a:nx*xb;

subplot(2,1,1)

plot(xl,f1, linewidth ' ,3)

xgrid

xlabel ('values taken by the random variable’)

ylabel (' Unifrom Density ")

title (’Uniform Random variable ’)

legend (” Uniform density”)

mtlb_axis ([min(x1) max(xl) O max(£f1)+0.1])

subplot(2,1,2)

plot(x11l,f, 'linewidth ’,3)

xgrid

xlabel ('values taken by the Random variable=Sum of
independent uniform random variables’)

ylabel ('Density of sum of independent uniform random

varaibales ’)

title(’Density of sum of 10 independent uniform
random variables ’)

legend (" Density of sum of independent random
variables 7)

mtlb_axis ([min(x11l) max(x11l) 0 max(f)+0.25])

//output testcase
//lower bound for the density of the random variable

: —2

//upper bound for the density of the random Variable
: 2

//number of Random variables: 10

50

Enter the lower bound for the density of the random variable:-2
Enter the upper bound for the density of the random Variable:2

Enter the number of Random variables:10

Figure 9.1: Central Identical

Scilab code Solution 9.1 Central Non Identical

1 //Verification of Central Limit Theorem for
independent uniform and exponential random
Variables

2 //Density of sum of n number of independent
identically or non identically distributed
random variables approaches // gaussian
Density in the limit n tends to infinity

//Uniform density
a=input ("Enter the lower bound for the density of
the Uniform random variable:)
9 b=input (' Enter the upper bound for the density of
the Uniform random Variable:)
10 x=a:b;
11 U=(1/(b-a))*ones(1l,length(x));

3 //Windows 10

4 //Scilab 6.1.0
5 clear

6 clc

7

8

o1

Unifrom Density

nsity of sum of independent uniform random varaibales

0.3

0z

05

Unifarm Randem wvariable

—— Iniform density

values taken by the Random variable=Sum of independent uniform random variables

Figure 9.2: Central Identical

52

-4 -3 -2 -1 8] 1 2 3 4
values taken by the random variable
Density of surn of 10 independent uniform random variables
——— Density of sum of independent random variables
4 ™

i R, e,

L T T T T T T
-20 -15 -10 -5 o g 10 15 20

12
13
14

15
16

17

18
19
20
21
22

23
24
25
26
27
28
29
30
31

32

33
34

35

36

37
38

U1=U;

//Exponential density

k=input ("Enter the parameter for the exponential
random variable:’)

E=(1/(1-exp(-k)))*k*xexp (~k*x) ;

nl=input ("Enter the number of Uniform random
variables:)

n2=input ('Enter the number of Exponenetial random
variables:)

//Density of sum of Uniform random Variables

for i=1:n1-1

U=conv (U,U1);

end

//Density of sum of Uniform and Exponential random
variables

for i=1:n2

U=conv (E,U)

end

x1=(n1+n2)*a:(n1+n2)*b;

xgrid

plot(x1,U, "linewidth ' ,3)

title(’Density of sum of random variables’)

xlabel ('values taken by sum of random variables’)

ylabel (' Probability Density function of sum of
random variables 7)

legend (" Density of sum of exponential and Uniform
random variables”)

//output test case

//lower bound for the density of the Uniform random
variable: 0

//upper bound for the density of the Uniform random
Variable: 4

//parameter for the exponential random variable: 1

//number of Uniform random variables: 10

//number of Exponenetial random variables: 10

53

Scilab 6.1.0 Console

Enter the lower bound for the density of the Uniform random variable:0
Enter the upper bound for the density of the Uniform random Variable:4
Enter the parameter for the exponential random variable:l

Enter the number of Uniform random variables:10

Enter the number of Exponenstial random wvariables:10

Figure 9.3: Central Non Identical

o4

Frobahility Density function of sum of random variables

T ooo

5000

5000

4000

3000

2000

1000

Density of sum of random variables

|_ Density of sum of exponential and Uniform random variables

FA

P

20 25 30 3% 4 45 S0 55 B0 85 TOOTS

values taken by sum of random variables

Figure 9.4: Central Non Identical

95

© 00 J O U i W

10
12

13
14

15

Experiment: 10

Checking the given random
Process for Stationary

Scilab code Solution 10.0 Stationarity

//Checking thr Given random process for Stationarity

//This program checks the random process x(t)=A cos(
wot+Theta), where Theta is a Uniform random
variable over (0,2pi)

//Windows 10

//Scilab 6.1.0

clear

clc

A=input ("Enter the Peak of the Process:’)

fo=input (’Enter the value of fo:’)

t=input ("Enter the value of time instant:’)

k=input ("Enter k:7)

a=input ("Enter the lower bound for theta:’)

b=input (’Enter the upper bound for theta:’)

deff (’[w]=f(theta)’, 'w=Axcos (2x%pixfoxt+theta)’)

//Scilab s integrate routine tries to achieve
absolute error atmost le—8 and relative error
atmost le—14.

//1f it is less than that, it throws an error and

56

16
17
18

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45

46
47

will be dippayed that ”try with higher //
tolerance ’

//The following syntax fixes the tolerance.

M=(1/(b-a))*intg(a,b,f,1e-8,1);

deff (’[y]=g(theta)’, y=(A"2/2)xcos (2%2x %pixfoxt+2x
%opixfoxk+2«theta) ') ;

al=(1/(b-a))*intg(a,b,g,1e-8,1);

deff (’[z]=h(theta)’, z=(A"2/2)xcos (2x%pixfoxk)’);

a2=(1/(b-a))*intg(a,b,h);

R=al+a?2;

disp(”The mean and the Autocorrelation of the
process are respectively”)

disp (M)

disp (”and”)

disp (R)

//output testcase

//for given t and k

//Peak of the Process:1

//value of fo:1

//value of time instant:1

//k:1.5

//lower bound for theta:0

//upper bound for theta:2x% %pi

//The mean and the Autocorrelation of the process
are respectively 1.249D—16(=0)) and —0.5

//Change in t and no Change in k

//Peak of the Process:1

//value of fo:1

//value of time instant:2

/] k:1.5

//lower bound for theta:0

//upper bound for theta:2x% %pi

//The mean and the Autocorrelation of the process
are respectively 1.249D—16(=0)) and —0.5

// No change in t and change in k

o7

48
49
50
51
52
53
54

55
56

o7
58

Scilab 6.1.0 Console ? A X

Enter the Peak of the Process:l

Enter the value of fo:l

Enter the value of time instant:l

Enter k:l.5

Enter the lower bound for theta:0

Enter the upper bound for theta:2%$pi

Figure 10.1: Stationarity

//Peak of the Process:1

//value of fo:l

//value of time instant:2

/] k:2

//lower bound for theta:0

//upper bound for theta:2x%pi

//The mean and the Autocorrelation of the process
are respectively 1.249D—16(=0) and 0.5

//Mean of the process is zero(constant), and is
independent of time instant of measurement.

//Autocorrelation is a function of k

//Hence, the given process is stationary.

58

b 6.1.0 Console

Enter the Peak of the Process:1
Enter the value of fo:l

Enter the value of time instant:2
Enter k:2

Enter the lower bound for theta:0

Enter the upper bound for theta:2%$pi

Figure 10.2: Stationarity

ilab 6.1.0 Console

Enter the Peak of the Process:l

Enter the value of fo:l

Enter the value of time instant:2

Enter k:1.5

Enter the lower bound for theta:0

Enter the upper bound for theta:2*ipi

Figure 10.3: Stationarity

59

CO N O Ut = W

10
11
12
13
14
15
16

Experiment: 11

Verification of
Weiner-Khnichine Relation

Scilab code Solution 11.0 Wiener Khinchine Theorem

// Verificatioin of Wiener—Khnichine relation for
the signal x(t)=sin (30.pi.t)+sin(60.pi.t)
// Autocorrelation function and Power spectral
Density of a signal form a Fourier transform pair
//Windows 10
//Scilab 6.1.0
clear
clc
fs=input (’Enter the sampling Frequency:’)
T=input ("Enter the duration upto which the signal is
to be plotted:’)
t=0:1/fs:T;
x=sin (30*%pi*t)+sin (60*%pi*t) ;
N=input ('Enter the DFT length:’)
//making the length of x equal to N
if length(x)<N
x(length(x)+1:N)=0;
else
if length(x)>N

60

17
18
19
20
21
22
23

24
25

26
27
28
29
30
31
32
33
34
35

36
37
38
39
40

41
42
43
44
45
46

47

48

x(N+1:length(x))=[];
end
end
//computation of N point DFT of the sequence
X=fft(x);
f=fs*(0:N-1)/N;
//computation of PSD = (1/N)xabs(fft) 2 using the
direct expression
PS=(1/N)*(abs(X)."2);
//computation of Autocorrelation function of the
signal
R=xcorr (x,x);
//making length of R equal to N
if length(R)<N
R(length(R)+1:N)=0;
else
if length(R)>N
R(N+1:length(R))=[];
end
end
//computation of Power Spectral Density drom
Autocorrelation Function
PSD=fft (R);
subplot(2,1,1)
xset ("thickness” ,3)
plot2d3(f,PS)
xtitle ("Power spectral density computed”, ’freuqency
, Watts/Hz ")
mtlb_axis ([min(f) max(f) min(PS) max(PS)])
legend ("PSD=(1/N) . |X(k)|"2")
subplot(2,1,2)
xset (" thickness” ,3)
plot2d3(f,abs (PSD))
xtitle (" Power spectral density computed from
Autocorrelation Function”, ’freuqency’, Watts/Hz’)
mtlb_axis ([min(f) max(f) min(abs (PSD)) max(abs(PSD))
D)

legend ("PSD=Fourier Transform of Autocorrelation

Y

61

Seilab 6.1.0 Console

Enter the sampling Frequency:100
Enter the duration upto which the signal is to be plotted:10

Enter the DFT length:1024

Figure 11.1: Wiener Khinchine Theorem

Function”)
49 //sampling Frequency: 100
50 //duration upto which the signsal is to be plotted:
10
51 //DFT length: 1024

62

Watts/Hz

Power spectral density computed

| . PSD=(1/N).| 20012 |

200 =
150 =
M
T
% 100 =
H
50 =
0 T T T T T T | 1
8] 10 20 an 40 50 &0 70 a0 an 100
freugency
Power spectral density computed from Autocorrelation Function
I PSD=Fourier Transform of Autocornelation Function I
100 000 =
50 000 =
o T T T T T T T 1
10 20 30 40 a0 G0 70 80 an 100
freugency

Figure 11.2: Wiener Khinchine Theorem

63

CO J O Ut i W

10

11
12
13
14

Experiment: 12

Simulation of Gaussian
Random Vectors

Scilab code Solution 12.0 Gaussian

//Simulation of generation of Bivariate Gaussian

random vector

//R and S are bivariate gaussian random Variables
which are to be generated, with desired mean,
sandard deviation and //covariance

//Windows 10

//Scilab 6.1.0

clear

clc

//sdR=standard deviation of R

sdR=input ("Enter the desired standard
2)

//sdS=standard deviation of S

sdS=input ("Enter the desired standard
27D

//mR=mean of R

mR=input ("Enter the desired mean of R:

//mS=mean of S

mS=input ("Enter the desired mean of S:

64

deviation of R

deviation of S

")

")

15
16

17
18
19
20

21
22
23

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38

39
40
41
42

43
44

45

//k=correlation coefficient between R and S

k=input ("Enter the desired correaltion coefficient
between R and S:7)

M=input (’Enter the number of realizations:’)

G=[sdR 0;k*sdS sdS*sqrt(1-k~2)];

for i=1:M

//generation of two standardized Gaussian random
variables P and Q

P=grand(1,1,”nor” ,0,1);

Q=grand(1,1,”nor”,0,1);

// Transformation of P and Q to the desired mean and
covariance

//G=[sdR 0;k.sdS sdS.sqrt(l1-k"2)]

// IR S]'=G.*[P Q] 4+ [mR mS]”’

rs=G*[P Q]’+[mR mS]’;

RS(:,i)=rs;

end

//verifying the mean of the individual random
variables R and S

//meanest is the estimated mean

meanestR=mean (RS (1, :));

meanestS=mean (RS(2,:));

//verifying the covariance matrix

//COV(R,S)=E(RS)-E(R) .E(S)

RS1(1,:)=RS(1,:)-meanestR;

RS1(2,:)=RS(2,:) -meanestS;

covest=[0 0;0 0];

//computation of covariance Matrix [var(R) k.sdR.sdS
; k.sdR.sdS var(S)]

for i=1:M

covest=covest+(RS1(:,i)*RS1(:,1i)’)/M

end

//computation of correlation coefficient between R
and S

corcoe=covest (1,2)/ sqrt(covest(l,1)*covest(2,2));

disp(’The mean of the random variable R is’,meanestR
)

disp(’The mean of the random variable S is’,meanestS

65

46

47

48
49
50
51
52
53
54
55

56

o7

58

59

60

61

62

63

64
65

66

)

disp(’The Standard deviation of R is’,sqrt(covest
(1,1)))

disp(’The Standard deviation of S is’,sqrt(covest
(2,2)))

disp(’The covariance between R and S is’,corcoe)

//output testcase

//desired standard deviation of R: 1

//desired standard deviation of S: 1

//desired mean of R: 1

//desired mean of S: 1

//desired correaltion coefficient between R and S:
0.9

//number of realizations: 2000

// Result

//The mean of the random variable R is 0.9668127(
against the desired = 1)

//The mean of the random variable S is 0.9748126(
against the desied=1)

//The Standard deviation of R is 1.0276458(against
the desired =1)

//The Standard deviation of S is 1.0232880(against
the desired =1)

//The covariance between R and S is 0.9015213(
against the desired =0.9)

// grand’ function of scilab generates distinct
results in different runs of the code.
//Output in each run will be unique

66

Scilab 6.1.0 Console

Enter the desired standard deviation of R:1l

Enter

Enter

Enter

Enter

Enter

the

the

the

the

the

desired standard deviation of S:1

desired mean of R:l

desired mean of S:l

desired correaltion coefficient between R and 5:0.9

number of realizations:2000

Figure 12.1: Gaussian

"The mean of the random variable R is™

0.9668127

"The mean of the random variable S is™

0.9748126

"The Standard deviation of R is"™

1.0276458

"The Standard deviation of S is"™

1.0232880

"The covariance between R and S is"™

0.9015213

Figure 12.2: Gaussian

67

	
	Verification of Gibb's Phenomenon
	Verification of sampling theorem
	Wave Form Synthesis
	Location of Poles and Zeros of a given Transfer function in S-plane and Z-plane
	Removal of Noise from the combination of signal and noise using Auto/Cross correlation
	Verification of Physical realizability and Stability of a given LTI system
	Plotting the CDF and pdf of a Random Variable
	Computation of Moments of a Random variable
	Verification of Central Limit Theorem
	Checking the given random Process for Stationary
	Verification of Weiner-Khnichine Relation
	Simulation of Gaussian Random Vectors

