Scilab Manual for
Digital Signal Processing
by Mr Vijay P Sompur
Electronics Engineering
Visvesvraya Technological University?

Solutions provided by
Mr. R.Senthilkumar- Assistant Professor
Electronics Engineering
Institute of Road and Transport Technology

February 12, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”"Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

3

Verification of Sampling theorem.
Impulse response of a given system
Linear Circular convolution of two given sequences

Autocorrelation of a given sequence and verification of its
properties.

Cross correlation of given sequences and verification of its
properties.

Solving a given difference equation.

Computation of N point DFT of a given sequence and to
plot magnitude and phase spectrum.

Linear convolution of two sequences using DFT and IDFT.

Circular convolution of two given sequences using DFT and
IDFT

10 Design and implementation of FIR filter to meet given spec-

ifications.

11 Design and implementation of IIR filter to meet given spec-

ifications.

11

14

18

21

24

26

30

33

35

39

12 Circular convolution of two given sequences

49

List of Experiments

Solution 1.1
Solution 2.2

Solution 3.1
Solution 4.1
Solution 5.1
Solution 6.1
Solution 7.1
Solution 8.1
Solution 9.1
Solution 10.1
Solution 11.1

Solution 11.2

Solution 12.1

Verification of Sampling Theorem
Program to find impulse response and Frequency
Response of a system
Program to Compute the Convolution of Two Se-
quences
Program to Compute the Autocorrelation of a Se-
quence And verfication of Autocorrelation property
Program to Compute the Crosscorrelation of a Se-
quence And verfication of crosscorrelation property
Solving Difference Equation Direct Form II Real-
ization
Program to find the spectral information of discrete
time signal Calculation of DFT and IDFT

Linear Convolution using Circular Convolution DFT
IDFT method
Circular Convolution using DFT IDFT method
To Design an Low Pass FIR Filter
To obtain Digital IIR Butterworth low pass filter
Frequency response
To obtain Digital IIR Chebyshev low pass filter Fre-
QUENCY TESPONSE . . .« . v v v e o e e
Program to perform circular convolution of two se-
quences

11

14

21
24
26
30
33
35
39
43

49

List of Figures

1.1
1.2

2.1

3.1

7.1

8.1

10.1
11.1

11.2

Verification of Sampling Theorem
Verification of Sampling Theorem

Program to find impulse response and Frequency Response of
asystem oL Lo

Program to Compute the Convolution of Two Sequences

Program to find the spectral information of discrete time signal
Calculation of DFT and IDFT

Linear Convolution using Circular Convolution DFT IDFT
method

To Design an Low Pass FIR Filter

To obtain Digital IIR Butterworth low pass filter Frequency
TESPONSE . . o v v e e e e e
To obtain Digital IIR Chebyshev low pass filter Frequency
TESPONSE .« o v o v e e e e e e

12

15

27

31
36

40

44

N O U =~ W \)

co

10
11
12
13
14
15
16
17

Experiment: 1

Verification of Sampling
theorem.

Scilab code Solution 1.1 Verification of Sampling Theorem

//Caption: Verification of Sampling Theorem

//[1].Right Sampling [2]. Under Sampling [3]. Over
Sampling

clc;

close;

clear;

fm=input (’Enter the input signal frequency:’);

k=input ('Enter the number of Cycles of input signal:
)5

A=input ("Enter the amplitude of input signal:’);

tm=0:1/(fm*fm) :k/fm;

x=A*xcos (2*%pi*xfm*tm) ;

figure (1) ;
a = gca();
a.x_location = "origin”;
a.y_location = "origin”;

plot (tm,x);
title (’ORIGINAL SIGNAL’);
xlabel ('Time’) ;

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

ylabel (" Amplitude) ;

xgrid (1)

//Sampling Rate(Nyquist Rate)=2xfm
fnyq=2*fm;

// UNDER SAMPLING

fs=(3/4) *xfnyq;

n=0:1/fs:k/fm;

xn=A*xcos (2x)pi*xfm*n) ;

figure (2);
a = gca();
a.x_location = "origin”;
a.y_location = "origin”;

plot2d3(’gnn’,n,xn);
plot(n,xn, 'vr7);
title(’Under Sampling’);
xlabel ('Time’) ;
ylabel (" Amplitude ') ;
legend (’Sampled Signal’, ’Reconstructed Signal’);
xgrid (1)

//NYQUIST SAMPLING
fs=fnyq;

n=0:1/fs:k/fm;

xn=A*cos (2*%pi*fm*n) ;

figure (3);
a = gca();
a.x_location = "origin”;
a.y_location = "origin”;

plot2d3(’gnn’,n,xn);
plot(n,xn, 'vr7);
title(’Nyquist Sampling’);
xlabel ('Time’) ;
ylabel (" Amplitude) ;
legend (’Sampled Signal’, ’Reconstructed Signal’);
xgrid (1)

//OVER SAMPLING
fs=fnyq*10;

n=0:1/fs:k/fm;

xn=A*xcos (2x)pi*xfm*n) ;

56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72

figure (4);
a = gca(Q);
a.x_location
a.y_location

“origin”;
“origin”;

plot2d3(’gnn’,n,xn);

plot(n,xn, 'r’);

title(’Over Sampling’);

xlabel ('Time’) ;

ylabel (" Amplitude) ;
legend (’Sampled Signal’,

xgrid (1)
// Result

//Enter the input

//

//Enter the number of Cycles of input signal:2

//

//Enter the amplitude of input

signal

"Reconstructed Signal’);

frequency :100

signal :2

Figure 1.1: Verification of Sampling Theorem

Figure 1.2: Verification of Sampling Theorem

10

I R

© 00 N O Ot

10

12
13
14
15

Experiment: 2

Impulse response of a given
system

Scilab code Solution 2.2 Program to find impulse response and Frequency
Response of a system

//Caption: Program to find impulse response and
//Frequency Response of a system

//y[n] = axy[n—1]+x[n]

//Assume y[n] = h[n], x[n]=delta[n]=unit impulse
response

//a = 0.9

//h[n] = 0.9%xh[n—1]+delta[n]

clc;

clear;

close;

a = 0.9;//constant a = 0.9 less than 1

hO = 1;

hi = a; //first two values of impulse response

h = [hO,hl,zeros(1,100)1];
for i = 1:100
h(i+2) = ((a)~(i+1))*h(i+1);//impulse response

11

.._—————l———————.l-—————_

g et et

1

i

1

1

i

1

1

T
7
i
ay

b

Figure 2.1: Program to find impulse response and Frequency Response of a

system

12

16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31

end

[HW,W] = frmag(h,512); //frequency response

figure (1)
subplot(2,1,1)

a = gca();

a.x_location = ’origin’;
a.y_location = ’origin’;
plot ([1:1length(h)],h, 'vr7);

xlabel ('’ Discrete Time Index n————>’);

ylabel (’Impulse Response h|[n]

title(’Impulse Response of first

system)
xgrid (1)
subplot(2,1,2)
a = gca();
a.x_location = ’origin’;
a.y_location = ’origin’;

recursive

plot ([mtlb_fliplr (-2%%pi*W) ,2%%pi*xW(2:$)]1,[
mtlb_fliplr (abs (HW)),abs(HW(2:$))1)

xlabel (' Discrete Frequency index W—m—m———>")

ylabel ('Magnitude Response |H(W)-———— >7)

title(’Frequency Response of a causal, stable, LTI
Ist Order Recursive System’);

xgrid (1)

13

N O O e W N

© 0o

10
11
12

13

Experiment: 3

Linear Circular convolution of
two given sequences

Scilab code Solution 3.1 Program to Compute the Convolution of Two
Sequences

//Caption: Program to Compute the Convolution of Two

Sequences

clc;

clear;

close;

x = input(’Enter the input Sequence:=");

m = length(x);

1x = input(’Enter the lower index of input sequence
=)

hx = 1x+m-1;

n = 1lx:1:hx;

h = input(’Enter impulse response sequence:=")

1 = length(h);

lh = input(’Enter the lower index of impulse
response:=")

hh = 1h+1-1;

14

A
@
=
]
=
E
S

Amiplitude---=

Figure 3.1: Program to Compute the Convolution of Two Sequences

15

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

g = lh:1:hh;

nx = lx+1h;

nh = nx+m+1-2;

y = convol(x,h)

r = nx:nh;

figure (1)

subplot (3,1,1)

a = gca(Q);

a.x_location = "origin”;
a.y_location = "origin”;

plot2d3(’gnn’,n,x)
xlabel ('n==>")
ylabel (" Amplitude—>")
title(’Input Sequence x[n]’)
subplot (3,1,2)

a = gca();
a.x_location = "origin”;
a.y_location = "origin”;

plot2d3(’gnn’,g,h)
xlabel ('n=—=>")
ylabel (" Amplitude——>")

title (’'Impulse Response Sequence h[n|=")
subplot (3,1,3)

a = gca();

a.x_location = "origin”;

a.y_location = "origin”;

plot2d3(’gnn’,r,y)

xlabel ('n=—=>")

ylabel (' Amplitude——>")

title ("Output Response Sequence y[n]=")
//Example

//Enter the input Sequence:=[1,2,3 1]

//

//Enter the lower index of input sequence:=0

//

//Enter impulse response sequence:=[1,2,1,—1]
//

//Enter the lower index of impulse response:=—1

16

52
53
54
95
56
o7
58

//

//
//—>y
/]y
//

//

//

1.

4.

17

O 3 O U i W N

10
11
12
13
14

Experiment: 4

Autocorrelation of a given
sequence and verification of its
properties.

Scilab code Solution 4.1 Program to Compute the Autocorrelation of a
Sequence And verfication of Autocorrelation property

//Caption: Program to Compute the Autocorrelation of
a Sequence

//And verfication of Autocorrelation property

clc;

clear;

close;

x = input(’Enter the input Sequence:=");

m = length(x);

1x = input(’Enter the lower index of input sequence
=)

hx = 1x+m-1;

n = 1lx:1:hx;

x_fold = x($:-1:1);
nx = lx+1x;

nh nx+m+m-2;

r = nx:nh;

18

15
16
17

18
19
20
21

22

23
24

25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Rxx = convol(x,x_fold);

disp (Rxx, "Auto Correlation Rxx[n]:=")
//Property 1: Autocorrelation of a sequence has even
symmetry

//Rxx[n] = Rxx[—n]
Rxx_flip = Rxx([$:-1:1]);
if Rxx_flip==Rxx then
disp(’Property 1:Auto Correlation has Even
Symmetry ') ;
disp(Rxx_flip, "Auto Correlation time reversed
Rxx[—n]:=");
end
//Property 2: Center value Rxx[0]= total power of
the sequence
Tot_Px = sum(x."2);
Mid = ceil(length(Rxx)/2);
if Tot_Px == Rxx(Mid) then
disp(’Property 2:Rxx[0]=center value=max. value=
Total power of i/p sequence’);
end
subplot(2,1,1)
plot2d3(’gnn’,n,x)
xlabel ('n=—=>")
ylabel (" Amplitude—>")
title (’Input Sequence x[n]’)
subplot(2,1,2)
plot2d3(’gnn’,r,Rxx)
xlabel ('n=—=>")
ylabel (" Amplitude—>")
title (’Auto correlation Sequence Rxx[n]’)

//Example

//Enter the input Sequence:=[2,—1,3,4,1]

//

//Enter the lower index of input sequence:=-2
//

// Auto Correlation Rxx[n]:=

//

/) 2. 7. 5. 11. 31. 11. 5.

19

48
49
50
o1
52
53

o4
55

//
//
//
//
//
//

//
//

7. 2.

Property 1:Auto Correlation has Even Symmetry

Auto Correlation time reversed Rxx[—n]:=

2. 7. .
7. 2.

Property 2:Rxx[0]=center value=max.

power of i/p sequence

11.

31.

11. 5.

value=Total

20

© 00 J O Ut i W N

—
o

11

12
13

Experiment: 5

Cross correlation of given
sequences and verification of its
properties.

Scilab code Solution 5.1 Program to Compute the Crosscorrelation of a
Sequence And verfication of crosscorrelation property

//Caption: Program to Compute the Crosscorrelation
of a Sequence

//And verfication of crosscorrelation property

clc;

clear;

close;

x = input(’Enter the First input Sequence:=");

y = input(’Enter the second input Sequence:=")

mx = length(x);

my = length(y);

1x = input (’Enter the lower index of first input
sequence:=")

ly = input(’Enter the lower index of second input
sequence:=")

hx = 1lx+mx-1;

n = 1lx:1:hx;

21

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

33
34

35
36
37
38
39
40

41
42
43
44
45
46
47

x_fold = x($:-1:1);
y_fold = y($:-1:1);

nx = 1lx+1ly;
ny = nx+mx+my-2;
I = nx:ny;

Rxy = convol(x,y_fold);
Ryx = convol(x_fold,y);

disp(Rxy, "Cross Correlation Rxy[n]:=")

count =1;

//Property 1: crosscorrelation of a sequence has

Antisymmetry
//Rxy[n] = Ryx[—n]
Ryx_flip = Ryx([$:-1:1]1);
for i = 1:length(Rxy)

if (ceil(Ryx_flip(i))==ceil(Rxy(i))) then

count = count+1;
end
end

if (count==length(Rxy)) then
disp(’Property 1:Cross
AntiSymmetry: Rxy[n]=Ryx[—-n]’);

end

//Property 2:% Verification of Energy Property of

Rxy
Ex = sum(x."2);
Ey = sum(y."2);
E = sqrt (Ex*Ey);
Mid = ceil(length(Rxy)/2);
if (E >= Rxy(Mid)) then

disp(’Property 2:Energy Property of Cross

Correlation has

Correlation verified’)

end

subplot(2,1,1)
plot2d3(’gnn’,n,x)
xlabel ('n=—=>")
ylabel (" Amplitude—>")

title (’Input Sequence x[n]’)

subplot (2,1,2)

22

48
49
50
o1
52
53
54
55
56
o7
58
59

60
61

plot2d3(’gnn’,r,Rxy)

xlabel ('n=—=>")

ylabel (" Amplitude—>")

title (’Cross correlation Sequence Rxy[n]’)
//Example

//Enter the First input Sequence:=[1,2,1,1]

//Enter the second input Sequence:=[1,1,2 1]
//Enter the lower index of first input sequence:=0
//Enter the lower index of second input sequence:=0
//Cross Correlation Rxy|[n]:=

/) 1. 4. 6. 6. 5. 2. 1.
//Property 1:Cross Correlation has AntiSymmetry: Rxy
[n]=Ryx[—n]

//

// Property 2:Energy Property of Cross Correlation
verified

23

0 3 O O = W N

10
11
12
13
14
15
16
17

Experiment: 6

Solving a given difference
equation.

Scilab code Solution 6.1 Solving Difference Equation Direct Form II Re-
alization

//Caption: Solving Difference Equation

//Direct Form—II Realization

//Finding out the Output Response of the first order

//system (Filter)

clc;

clear;

close;

x =
(1,1/2,1/4,1/8,1/16,1/32,1/64,1/128,1/256,1/512];

b = [3,-4/3]; //numerator polynomials

a = [1,-1/3]; //denominator polynomials

p = length(a)-1;

q = length(b)-1;

pq = max(p,q);

a = a(2:p+1);

w = zeros (1,pq);

for i = 1:length(x)
wnew = x(i)-sum(w(l:p).*a);

24

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

w:

y (i) sum(w(1l:q+1) .*b);
end
disp(y, 'Output Response y[n]
//Result
//Output Response y|[n]
YA}
/] 1.1666667
/) 0.4722222
/) 0.1990741
/) 0.0871914
/) 0.0394805
/) 0.0183685
// 0.0087270
// 0.0042111
/) 0.0020547

[wnew ,w];

25

N O U = W N

oo

10
11
12

Experiment: 7

Computation of N point DFT
of a given sequence and to plot
magnitude and phase spectrum.

Scilab code Solution 7.1 Program to find the spectral information of dis-
crete time signal Calculation of DFT and IDFT

//Caption: Program to find the spectral information
of discrete time signal

// Calculation of DFT and IDFT

//Plotting Magnitude and Phase Spectrum

clc;

close;

clear;

xn = input (’Enter the real input discrete sequence x
[n]=");

N = length(xn);

XK = zeros(1,N);

IXK = zeros(1,N);

//Code block to find the DFT of the Sequence

for K = 0:N-1

26

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Discrete Input Sequence Wagnitude Spestum

4 10
35 Byl
s
2
A 7
L2s . 84
H '
$ o &]
= 2
E]
Eas
2
o
2]
05 7
0 T T T T T o T T T T T
0 05 1 15 2 25 E 0 05 1 15 2 25 E
Time Index o> Frequeney Sample Index K->
Phase Spectum IDFT sequence
e
35
200
2
4 150 i2s
E x
3 & o
= 100 ES
£ ERER
B4 <
14
50
05
o T T T T T o T
0 0s 1 15 2 25 3 o 0s 1 15 2 25 3
Frequency Sample Index K-> Discrete Time Index n -

Figure 7.1: Program to find the spectral information of discrete time signal
Calculation of DFT and IDFT

for n = 0:N-1
XK(K+1) = XK(K+1)+xn(n+1)*exp (-%i*2*x%pi*xK*n/
N);
end
end
[phase ,db] = phasemag (XK)

disp (XK, 'Discrete Fourier Transform X(k)=")
disp (abs (XK), 'Magnitude Spectral Samples=")
disp (phase, "Phase Spectral Samples=")

n = 0:N-1;

K = 0:N-1;

figure (1)

subplot(2,2,1)

a = gca();

a.x_location = "origin’;

a.y_location “origin”;
plot2d3(’gnn’,n,xn)

xlabel ('Time Index n————>")

27

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
o4
55
56
o7
o8
59
60
61
62
63
64
65
66

ylabel ("Amplitude xn >")
title(’Discrete Input Sequence’)
subplot (2,2,2)
a = gca();
a.x_location = "origin”;
a.y_location “origin”;
plot2d3(’gnn’,K,abs (XK))
xlabel ('Frequency Sample Index K———>")
ylabel (7 |X(K)|——>")
title (’Magnitude Spectrum ’)
subplot (2,2,3)
a = gca();
a.x_location = "origin”;
a.y_location “origin”;
plot2d3(’gnn’,K,phase)
xlabel ("Frequency Sample Index K >")
ylabel ('<X(K) in radians >")
title ('Phase Spectrum ’)
//Code block to find the IDFT of the sequence
for n = 0:N-1
for K = 0:N-1
IXK(n+1) = IXK(n+1)+XK(K+1)*exp (%i*x2*%pi*K*n
/N);

end
end
IXK IXK/N;
ixn real (IXK) ;
subplot(2,2,4)
a = gca(Q);
a.x_location = "origin”;
a.y_location “origin”;
plot2d3(’'gnn’,[0:N-1],ixn)

xlabel (' Discrete Time Index n ————>")
ylabel (’Amplitude x[n]————>")

title ('IDFT sequence ’)

//Example

//

//Enter the real input discrete sequence x[n

28

67
68
69
70
71
72
73
74
75
76
7
78
79

|=[1,2,3,4]

Discrete Fourier Transform X(k)=

10.

- 2. + 2.1

- 2.

— 9.797D-161

Magnitude Spectral Samples=

10.

2.8284271

2.

Phase Spectral Samples=

0.

135.

180.

225.

2.8284271

- 2.

2.1

1

29

© 00 J O Ot = W N

—_ = = =
w NN = O

Experiment: 8

Linear convolution of two
sequences using DFT and

IDFT.

Scilab code Solution 8.1 Linear Convolution using Circular Convolution

DFT IDFT method

//Caption: Linear Convolution using Circular

Convolution
//DFT=IDFT method
clc;
clear;
close;

x = input(’Enter the input discrete

sequence:=")

h = input(’Enter the impulse discrete sequence:=")

N1 = length(x);
N2 = length(h);

N = N1+N2-1;//Linear Convolution result length

h [h,zeros (1,N-N2)1];
x = [x,zeros(1,N-N1)];
//Computing DFT-IDFT

30

Figure 8.1: Linear Convolution using Circular Convolution DFT IDFT
method

31

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

XK =
HK =

dft(x,-1);//N point DFT of i/p sequence
dft(h,-1);//N point DFT of impulse sequence

// Multiplication of 2 DFT’s

YK =

XK .*xHK;

//Linear Convolution result

yn =

W oo O =

dft (YK,1); //IDFT of Y(K)(o/p sequence)
disp(real(yn), Linear Convolution result y[n]:
//Example

//Enter the input discrete sequence:=
//Enter the impulse discrete sequence:=[1,2,2 1]
//Linear Convolution result y[n]:

32

N O O =W N

10
11
12
13
14

Experiment: 9

Circular convolution of two

given sequences using DFT and
IDFT

Scilab code Solution 9.1 Circular Convolution using DFT IDFT method

//Caption: Circular Convolution using DFT-IDFT
method

clc;

clear;

close;

L = 4; // Length of the sequence

N = 4; //N-point DFT

x1 = input(’Enter the first discrete sequence:xl[n]|=
)

x2 = input(’Enter the second discrete sequence:x2[n
=)

//Computing DFT

X1K = dft(x1,-1);

X2K = dft(x2,-1);

// Multiplication of 2 DFT’s

X3K = X1K.*X2K;

x3 = dft(X3K,1); //IDFT of X3(K)

33

15
16
17
18
19

20
21
22
23
24
25
26

x3

= real (x3);
disp(x3, "Circular Convolution result:x3[n]=");

//Example

//Enter the first

[1,2,3,4]

Circular Convolution result:x3[n]=

14.
16.
14.
16.

discrete sequence:x1|
//Enter the second discrete sequence:x2

34

© 00 J O Ut i W N

— = = = e
U i W N = O

Experiment: 10

Design and implementation of
FIR filter to meet given
specifications.

Scilab code Solution 10.1 To Design an Low Pass FIR Filter

//Caption: To Design an Low Pass FIR Filter

clc;

clear;

close;

wp= input (’Enter the pass band edge (rad)= ’);
ws= input (’Enter the stop band edge (rad)= ’);
ks= input (’Enter the stop band attenuation (dB)= 7);
//1f 43<Ks<b4 choose hamming window.

//To select N,order of filter.

N= (2x%pix*4)./(ws-wp); // k=4 for Hamming window.
N= ceil(N); //To round—off N to the next integer.
we=(wp+(ws-wp)/2) ./%pi

// To obtain FIR filter Impulse Response ’“wft’
//And FIR Filter Frequency response ’wfm’

[wft ,wfm,fr]=wfir(’lp ’,N+1,[wc/2,0], 'hm’,[0,0]);

35

Figure 10.1: To Design an Low Pass FIR Filter

36

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38

39
40

41
42

43
44

45
46

47

figure (1)

a = gca(Q);
a.x_location = "origin”;
a.y_location = "origin”;

a.data_bounds = [0,-150;1,50];

plot (2xfr ,20%1logl0(wfm), 'r)
xlabel (' Normalized Digital Frequency w——>")
ylabel (’Frequency Response in dB H(jw)=")
title(’Frequency Response of FIR LPF’)
xgrid (1)

// Result

//Enter the pass band edge (rad)= 0.3x%pi
//Enter the stop band edge (rad)= 0.45%%pi
//Enter the stop band attenuation (dB)= 50

J/N = 54.
//—>wc
// we = 0.375

//—>disp (wft , Impulse Response of FIR LPF=")
// Impulse Response of FIR LPF=
// column 1 to 7

// 0.0003609 — 0.0007195 — 0.0010869 1.575D
—18 0.0016485 0.0015927 — 0.0010883

// column 8 to 14

// — 0.0035703 — 0.0017009 0.0038764
0.0061896 — 5.965D—18 — 0.0090208 — 0.0082516

// column 15 to 21

// 0.0053105 0.0164428 0.0074408 —
0.0162551 — 0.0251602 1.191D-17 0.0359480

// column 22 to 28
// 0.0334760 — 0.0225187 — 0.0756838 —

0.0394776 0.1111441 0.2931653 0.375
// column 29 to 35
// 0.2931653 0.1111441 — 0.0394776 —
0.0756838 — 0.0225187 0.0334760 0.0359480
// column 36 to 42
// 1.191D—17 — 0.0251602 — 0.0162551
0.0074408 0.0164428 0.0053105 — 0.0082516

// column 43 to 49

37

48 // — 0.0090208 — 5.965D-18 0.0061896

0.0038764 — 0.0017009 — 0.0035703 — 0.0010883
column 50 to 55

49 // 0.0015927 0.0016485 1.575D—-18 —
0.0010869 — 0.0007195 0.0003609

38

O 3 O Ot i W N

10

Experiment: 11

Design and implementation of

IIR filter to meet given
specifications.

Scilab code Solution 11.1 To obtain Digital IIR Butterworth low pass
filter Frequency response

//Caption: To obtain

pass filter

//Frequency response

clc;

clear;

close;

fp= input (’Enter
fs= input (' Enter
kp= input (’Enter
ks= input (' Enter
Fs= input (" Enter

I

the
the
the
the

the

Digital IIR Butterworth low

pass band edge (Hz) = 7);
stop band edge (Hz) = 7);
pass band attenuation (dB)
stop band attenuation (dB)

sampling rate samples/sec

39

")

)

)

Figure 11.1: To obtain Digital IIR Butterworth low pass filter Frequency
response

40

11
12
13
14
15
16
17
18

19

20
21
22
23

24

25
26
27
28
29
30
31
32

33
34

35
36
37
38
39
40
41

di = 10" (kp/20);

d2 = 10" (ks/20);

d = sqrt((1/(d2°2))-1);

E = sqrt ((1/(d1°2))-1);

//Digital filter specifications (rad/samples)

wp=2*/pi*xfp*1/Fs;

ws=2xYpi*xfs*1/Fs;

disp(wp, 'Digital Pass band edge freq in rad/samples
wp=")

disp(ws, 'Digital Stop band edge freq in rad/samples
ws=")

//Pre warping

op=2*Fs*xtan(wp/2) ;

os=2xFs*xtan(ws/2) ;

disp (op, "Analog Pass Band Edge Freq. in rad/sec op=’
)

disp(os, "Analog Stop band Edge Freq. in rad/sec os=’
)

N = 1logl0(d/E)/1logl10(os/op);

oc = op/((E~2) " (1/(2%N)));

N = ceil(N);//rounded to nearest integer

disp (N, "IIR Filter order N =7);

disp(oc, "Cutoff Frequency in rad/seconds OC =)

[pols,gn] = zpbutt(N,oc);

disp(gn, 'Gain of Analog IIR Butterworth LPF Gain =)

disp(pols, "Poles of Analog IIR Butterworth LPF Poles
=)

HS = poly(gn,’s’, coeff’)/real(poly(pols,’'s’));

disp(HS, 'Transfer function of Ananlog IIR
Butterworth LPF H(S)=")

z = poly(0,’z7)

Hz = horner (HS, (2*%Fs*(z-1)/(z+1)))

num = coeff (Hz(2))

den = coeff (Hz(3))

Hz (2)= Hz(2) ./den(3);

Hz (3) = Hz(3)./den(3);

disp(Hz, "Transfer function of Digitla IIR
Butterworth LPF H(Z)=")

)

41

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

[Hw,w] = frmag(Hz,256);

figure (1)

plot (2*xw*x%pi ,20%1ogl0 (abs (Hw))) ;
xlabel (' Digital Frequency w——>")
ylabel (’Magnitude in dB 20log |H(w)|=")
title(’Magnitude Response of IIR LPF’)
xgrid (1)

// Result

//Enter the pass band edge (Hz) = 1500

//

//Enter the stop band edge (Hz) = 2000

//

//Enter the pass band attenuation (dB) = -1
//

//Enter the stop band attenuation (dB) = -3
//

//Enter the sampling rate samples/sec = 8000
//

// Digital Pass band edge freq in rad/samples wp=
//

/) 1.1780972

//

// Digital Stop band edge freq in rad/samples ws=
//

// 1.5707963

//

// Analog Pass Band Edge Freq. in rad/sec op=
//

/) 10690.858

//

// Analog Stop band Edge Freq. in rad/sec os=
/) 16000.

// IIR Filter order N =

/e,

42

80 // Cutoff Frequency in rad/seconds OC =

81 //
82 // 16022.769

83 //
84 // Gain of Analog IIR Butterworth LPF Gain =

8 //
86 // 2.567D+08

87 //
88 // Poles of Analog IIR Butterworth LPF Poles =

89 //

90 // — 11329.809 + 11329.809i — 11329.809 —
11329.8091

o0/

92 // Transfer function of Ananlog IIR Butterworth LPF
H(S)=

93 //

04 // 2.567D+08

9% //

9% // 2

97 // 2.567D+08 + 22659.618s + s

9% //

99 // Transfer function of Digitla IIR Butterworth LPF
H(Z)=

100 //

101 // 2

102 // 0.2933099 + 0.5866197z + 0.2933099z

103 //

04 // 2

105 // 0.1715734 + 0.0016661z + z

106 //

Scilab code Solution 11.2 To obtain Digital IIR Chebyshev low pass filter
Frequency response

43

Figure 11.2: To obtain Digital IIR Chebyshev low pass filter Frequency re-
sponse

44

CO N O Ut = W N

10

11
12
13
14
15
16
17
18

19

20
21
22
23

24

25
26
27
28
29
30

//Caption: To obtain Digital IIR Chebyshev low pass
filter
//Frequency response

clc;

clear;

close;

fp= input (’Enter the pass band edge (Hz) = ’);

fs= input (’Enter the stop band edge (Hz) = ’);

kp= input (’Enter the pass band attenuation (dB) = ’)
ks= input (’Enter the stop band attenuation (dB) =)
Fs= input (’Enter the sampling rate samples/sec = 7)

dl = 10" (kp/20);

d2 = 10" (ks/20);

d = sqrt((1/(d272))-1);

E = sqrt ((1/(d172))-1);

//Digital filter specifications (rad/samples)

wp=2*/pi*xfp*x1/Fs;

ws=2*pixfs*x1/Fs;

disp(wp, 'Digital Pass band edge freq in rad/samples
wp=")

disp(ws, "Digital Stop band edge freq in rad/samples
ws=")

//Pre warping

op=2*Fsx*xtan (wp/2) ;

os=2xFs*xtan(ws/2) ;

disp (op, "Analog Pass Band Edge Freq. in rad/sec op=
)

disp(os, "Analog Stop band Edge Freq. in rad/sec os=
)

N = acosh(d/E)/acosh(os/op);

oc = op/((E~2)"(1/(2%N)));

N = ceil(N);//rounded to nearest integer

disp (N, "IIR Filter order N =7);

disp(oc, "Cutoff Frequency in rad/seconds OC =)

[pols,gn] = zpchl(N,E,op);

b

b

45

31

32

33
34

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64

disp(gn, 'Gain of Analog IIR Chebyshev Type—I LPF
Gain =")

disp(pols, 'Poles of Analog IIR Chebyshev Type—I LPF
Poles =")

HS = poly(gn,’s’, coeff’)/real(poly(pols,’s’));

disp(HS, 'Transfer function of Ananlog IIR Chebyshev
Type—I LPF H(S)=")

z = poly(0,’'z")

Hz = horner (HS, (2xFs*x(z-1)/(z+1)))

num = coeff (Hz(2))

den = coeff (Hz(3))

Hz (2)= Hz(2)./den(3);

Hz (3) = Hz(3)./den(3);

disp(Hz, 'Transfer function of Digitla IIR Chebyshev

Y

LPF H(Z)=")
[Hw,w] = frmag(Hz,256);
figure (1)

plot (2*xwx%pi ,20%1ogl0 (abs (Hw))) ;
xlabel (' Digital Frequency w——>")
ylabel (’Magnitude in dB 20log |H(w)|=")
title(’ Magnitude Response of IIR LPF’)
xgrid (1)

// Result

//Enter the pass band edge (Hz) = 1500

//
//Enter the stop band edge (Hz) = 2000

//

//Enter the pass band attenuation (dB) = -1

//

//Enter the stop band attenuation (dB) = =3

//

//Enter the sampling rate samples/sec = 8000

//

// Digital Pass band edge freq in rad/samples wp=

//
// 1.1780972

//

// Digital Stop band edge freq in rad/samples ws=

46

65 //

66 // 1.5707963

67 //

68 // Analog Pass Band Edge Freq. in rad/sec op=

69 //

70 /) 10690.858

/)

72 // Analog Stop band Edge Freq. in rad/sec os=

3 //

4 /) 16000.

/)

76 // IIR Filter order N =

7/

78 // 2.

9 //

80 //Cutoff Frequency in rad/seconds OC =

81 //

82 // 17642.912

83 //

84 // Gain of Analog IIR Chebyshev Type—I LPF Gain =

8 //

86 // 1.123D+08

87 //

88 // Poles of Analog IIR Chebyshev Type—I LPF Poles =

89 //

90 // — 5867.861 + 9569.6927i — 5867.861 — 9569.6927 i

91 //

92 // Transfer function of Ananlog IIR Chebyshev Type—I
LPF H(S)=

93 //

o1 // 1.123D+08

95 //

9%6 // 2

o7 /) 1.260D+08 + 11735.722s + s

98 //

99 // Transfer function of Digitla IIR Chebyshev LPF H(
Z)=

100 //

47

101
102
103
104
105

//
//
//
//
//

0.1971055 + 0.3942111z + 0.1971055z

0.3409008 — 0.4562766z + z

2

2

48

© 00 J O Ut i W N

e e T e T o S = S S G SRt
N O U = W N = O

Experiment: 12

Circular convolution of two
given sequences

Scilab code Solution 12.1 Program to perform circular convolution of two

sequences

//Caption: Program to perform circular convolution
of two sequences

clc;

clear;

close;

x1 = input ("Enter the first discrete sequence:=")
x2 = input (’Enter the second discrete sequence:=")

m = length(x1);//length of first sequence
n = length(x2);//length of second sequence
//To make length of x1 and x2 are equal
if (m>n)
for i = n+l:m
x2(1)=0;
end
elseif (n>m)
for i = m+1l:n
x1(i)=0;
end

49

18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

end
N = length(x1);

x3 = zeros(1,N);//circular

initialized to zero
a(1l) = x2(1);
for j = 2:N
a(j) = x2(N-j+2);

end
for i = 1:N
x3(1) = x3(1)+x1(i)*a(i);
end
X(1,:) = a;

// Calculation of circular
for k =2:N
for j = 2:N
x2(j) = a(j-1);
end
x2(1) = a(N);
X(k,:) = x2;
for i = 1:N
a(i) = x2(i);

x3(k) = x3(k)+x1(i)*a(i);

end
end

disp(x3,’Circular Convolution Result x3[n]=")

//Example

convolution

//Enter the first discrete

/] 14. 16. 14.
//

50

convolution

[2,1,2,1]
[1,2,3,4]

sequence:=
//Enter the second discrete sequence:=
//Circular Convolution Result x3[n]=

	
	Verification of Sampling theorem.
	Impulse response of a given system
	Linear Circular convolution of two given sequences
	Autocorrelation of a given sequence and verification of its properties.
	Cross correlation of given sequences and verification of its properties.
	Solving a given difference equation.
	Computation of N point DFT of a given sequence and to plot magnitude and phase spectrum.
	Linear convolution of two sequences using DFT and IDFT.
	Circular convolution of two given sequences using DFT and IDFT
	Design and implementation of FIR filter to meet given specifications.
	Design and implementation of IIR filter to meet given specifications.
	Circular convolution of two given sequences

