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Experiment: 1

Digital Modulation Functions:
ASK, FSK, PSK generation.

Scilab code Solution 1.1 1

1 // Amplitude S h i f t Keying , Frequency S h i f t Keying And
Phase S h i f t k ey ing waveform g e n e r a t i o n

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10; // no . o f symbols
6 g=[1 1 0 1 0 0 1 1 1 0 ]// b i n a r y data
7 f1=1;f2=2; // f r e q u e n c i e s o f c a r r i e r
8 t=0:2* %pi /99:2* %pi;// range o f t ime
9 //ASK

10 cp=[]; bit =[]; mod_ask =[]; mod_fsk =[]; mod_psk =[]; cp1

=[]; cp2 =[];

11 for n=1: length(g);//ASK modulat ion // Ze ro s and
ones a r e i n s e r t e d f o r p rope r p l o t o f message
s i g n a l

12 if g(n)==0;

13 die=zeros (1 ,100);

14 else g(n)==1;

15 die=ones (1 ,100);
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16 end

17 c_ask=sin(f1*t);

18 cp=[cp die];

19 mod_ask =[ mod_ask c_ask];

20 end

21 ask=cp.* mod_ask;//ASK modulated s i g n a l
22

23 //FSK
24 for n=1: length(g);

25 if g(n)==0;

26 die=ones (1 ,100);

27 c_fsk=sin(f1*t);

28 else g(n)==1;

29 die=ones (1 ,100);

30 c_fsk=sin(f2*t);

31 end

32 cp1=[cp1 die];

33 mod_fsk =[ mod_fsk c_fsk];

34 end

35 fsk=cp1.* mod_fsk;//FSK molated s i g n a l
36

37 //PSK
38 for n=1: length(g);

39 if g(n)==0;

40 die=ones (1 ,100);

41 c_psk=sin(f1*t);

42 else g(n)==1;

43 die=ones (1 ,100);

44 c_psk=-sin(f1*t);

45 end

46 cp2=[cp2 die];

47 mod_psk =[ mod_psk c_psk];

48 end

49 psk=cp2.* mod_psk;//PSK modulated s i g n a l
50 subplot (4,1,1);plot(cp, ’ LineWidth ’ ,1.5);// p l o t

b i na r y s i g n a l
51 xgrid;

52 title( ’ B inary S i g n a l ’ );// t i t l e
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53 mtlb_axis ([0 100* length(g) -2.5 2.5]); // a x i s range
54 subplot (4,1,2);plot(ask , ’ LineWidth ’ ,1.5);// p l o t o f

ASK modulated s i g n a l
55 xgrid;

56 title( ’ASK modulat ion ’ );// t i t l e o f p l o t
57 mtlb_axis ([0 100* length(g) -2.5 2.5]);// a x i s range
58 subplot (4,1,3);plot(fsk , ’ LineWidth ’ ,1.5);// p l o t o f

FSK modulated s i g n a l
59 xgrid;

60 title( ’FSK modulat ion ’ );// t i t l e o f p l o t
61 mtlb_axis ([0 100* length(g) -2.5 2.5]);// a x i s range
62 subplot (4,1,4);plot(psk , ’ LineWidth ’ ,1.5);// p l o t o f

PSK modulated s i g n a l
63 xgrid;

64 title( ’PSK modulat ion ’ );// t i t l e o f p l o t
65 mtlb_axis ([0 100* length(g) -2.5 2.5]);// range o f

a x i s
66 // R e s u l t : This expe r iment r e s u l t s p l o t s o f b i n a ry

data , ASK modulat ion , FSK modulat ion and PSK
modulat ion
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Experiment: 2

Constellation diagram and
Error Rate performance of
different modulation techniques
with AWGN channel.

Scilab code Solution 2.1 Sigal space diagram of different modulation

1 // C o n s t e l l a t i o n diagram o f BPSK and QPSK modulat ion
and BPSK and QPSK modulat ion ove r AWGN channe l

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =20; //No . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);//Random symbol

g e n e r a t i o n from 0 to 1 with un i fo rm d i s t r i b u t i o n
7 snr =10; // S i g n a l to No i s e Rat io
8 qpsk_mod =[];

9 bpsk_mod =2*data1 -1; //BPSK Modulat ion
10 for j=1:2: length(data1)// S e p e r a t i o n o f I & Q

component f o r QPSK modulat ion
11 i_phase =2* data1(j) -1; //BPSK modulat ion o f I phase

component
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12 q_phase =2* data1(j+1) -1; //BPSK modulat ion o f Q
phase component

13 temp=i_phase+%i*q_phase;// Combinibg I phase and Q
phase component f o r QPSK modulat ion

14 qpsk_mod =[ qpsk_mod temp]; //QPSK modulated s i g n a l
15 end

16

17 noise =1/ sqrt (2) *(10^( -( snr /20)))*(rand(1,length(

bpsk_mod), ’ normal ’ )+%i*(rand(1,length(bpsk_mod)
, ’ normal ’ )));// White g a u s s i a n n o i s e g e n e r a t i o n
f o r bpsk

18 noise1 =1/ sqrt (2) *(10^( -( snr /20)))*(rand(1,length(

qpsk_mod), ’ normal ’ )+%i*(rand(1,length(qpsk_mod)
, ’ normal ’ )));// White g a u s s i a n n o i s e g e n e r a t i o n
f o r qpsk

19 bpsk_awgn=bpsk_mod+noise;//BPSK Modulated s i g n a l
pa s s ed ove r AWGN channe l

20 qpsk_awgn=qpsk_mod+noise1;//QPSK Modulated s i g n a l
pa s s ed ove r AWGN channe l

21

22 figure // c o n s t e l l a t i o n diagram o f i d e a l BPSK
modulated s i g n a l and BPSK modulated s i g n a l with
White Gauss ian No i s e

23 a = gca();// to hand l e v a r i o u s o b j e c t
24 a.data_bounds = [ -1 , -1;1 ,1];

25 a.x_location = ” o r i g i n ”;
26 a.y_location = ” o r i g i n ”;
27 plot2d ( real(bpsk_mod),imag(bpsk_mod) ,-2);

28 plot2d ( real(bpsk_awgn),imag(bpsk_awgn) ,-5);

29 xlabel( ’ In phase ’ );//X−a x i s l a b e l
30 ylabel( ’ Quadrature phase ’ );//Y−a x i s l a b e l
31 title( ’ C o n s t e l l a t i o n f o r BPSK with AWGN’ );// t i t l e

o f p l o t
32 legend ([ ’ I d e a l message p o i n t ’ ; ’ message p o i n t with

n o i s e ’ ]);// l e g e n d
33 mtlb_axis ([-2 2 -2 2]);// range o f a x i s
34 figure // c o n s t e l l a t i o n diagram o f i d e a l QPSK

modulated s i g n a l and QPSK modulated s i g n a l with
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White Gauss ian No i s e
35 a = gca();// to hand l e v a r i o u s o b j e c t
36 a.data_bounds = [ -1 , -1;1 ,1];

37 a.x_location = ” o r i g i n ”;
38 a.y_location = ” o r i g i n ”;
39 plot2d ( real(qpsk_mod),imag(qpsk_mod) ,-2);

40 plot2d ( real(qpsk_awgn),imag(qpsk_awgn) ,-5);

41 xlabel( ’ In phase ’ );//X−a x i s l a b e l
42 ylabel( ’ Quadrature phase ’ );//Y−a x i s l a b e l
43 title( ’ C o n s t e l l a t i o n f o r QPSK with AWGN’ );// t i t l e

o f p l o t
44 legend ([ ’ I d e a l message p o i n t ’ ; ’ message p o i n t with

n o i s e ’ ]);// l e g e n d
45 mtlb_axis ([-2 2 -2 2]);// range o f a x i s
46 // R e s u l t : Gene ra t e s two p l o t s : BPSK modulated s i g n a l

with and wi thout n o i s e −f i g u r e −0
47 //QPSK modulated s i g n a l with

and wi thout n o i s e −f i g u r e −1

Scilab code Solution 2.2 BER of BPSK and QPSK over AWGN Channel

1 // Per formance compar i son o f S imula ted BER and
T h e o r i t i c a l BER o f BPSK and QPSK modulat ion ove r

AWGN channe l
2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 M=4;

7 qpsk_mod =[]; i_phase =[];

8 data1=grand(1,sym ,” u in ” ,0,1);//Random Symbol
g e n e r a t i o n from 0 to 1 with un i fo rm d i s t r i b u t i o n

9 for j=1:2: length(data1)// S e p e r a t i o n o f I & Q
component

10 i_phase =2* data1(j) -1; // BPSK modulat ion o f I
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phase component
11 q_phase =2* data1(j+1) -1; //BPSK modulat ion o f Q

phase component
12 temp=i_phase+%i*q_phase;// combin ing o f I phase

and Q phase component f o r QPSK modulat ion
13 qpsk_mod =[ qpsk_mod temp]; //QPSK modulated s i g n a l
14 end

15 bpsk_mod =2*data1 -1; //BPSK Modulated s i g n a l
16

17 snr =1:10; // S i g n a l to No i s e Rat io
18 for k=1:1: length(snr)

19 H=1/ sqrt (2)*(rand(1,length(qpsk_mod), ’ normal
’ )+%i*(rand(1,length(qpsk_mod), ’ normal ’ ))
);

20 noise1 =1/ sqrt (2) *(10^( -(k/20)))*(rand(1,

length(qpsk_mod), ’ normal ’ )+%i*(rand(1,
length(qpsk_mod), ’ normal ’ )));// White
Gauss ian No i s e g e n e r a t i o n f o r QPSK

21 noise =1/ sqrt (2) *(10^( -(k/20)))*(rand(1,

length(bpsk_mod), ’ normal ’ )+%i*(rand(1,
length(bpsk_mod), ’ normal ’ )));// White
Gauss ian No i s e g e n e r a t i o n f o r QPSK

22 rec1_qpsk=qpsk_mod+noise1;//QPSK
modulated s i g n a l ove r AWGN channe l

23 rec1_bpsk= bpsk_mod+noise;//BPSK
modulated s i g n a l ove r AWGN channe l

24

25 rec_data_qpsk =[]; rec_data_bpsk =[];

26 rec1_i=real(rec1_qpsk);// S e p e r a t i o n
o f I phase and Q phase comopnent
o f r e c e i v e d QPSK modulated s i g n a l

27 rec1_q=imag(rec1_qpsk);

28 //
29 for i=1: length(rec1_i)//QPSK Demodulat ion :

BPSK demodulat ion o f I phase and Q phase
components

30 if rec1_i(i) >=0

31 demod_out_i =1;

10



32 else rec1_i(i)<0

33 demod_out_i =0;

34 end

35 if rec1_q(i) >=0

36 demod_out_q =1;

37 else rec1_q(i)<0

38 demod_out_q =0;

39 end

40 rec_data_qpsk =[ rec_data_qpsk demod_out_i

demod_out_q ]; //QPSK Demodulated s i g n a l
41 end

42 for i=1:1: length(data1)//BPSK Demodulat ion
43 if real(rec1_bpsk(i)) >=0

44 demod_out_bpsk =1;

45 else real(rec1_bpsk(i))<0

46 demod_out_bpsk =0;

47 end

48 rec_data_bpsk =[ rec_data_bpsk

demod_out_bpsk ]; //BPSK Demodulated
s i g n a l

49 end

50

51 errA =0; errB =0;

52 for i=1: sym

53 if rec_data_qpsk(i)== data1(i)

54 errA=errA;

55 else

56 errA=errA +1;

57 end

58 end

59 BER_qpsk(k)=errA/sym;// BER o f QPSK
60

61 for i=1: sym

62 if rec_data_bpsk(i)== data1(i)

63 errB=errB;

64 else

65 errB=errB +1;

66 end
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67

68 BER_bpsk(k)=errB/sym;//BER o f BPSK
69 end

70 theoryBer = 0.5* erfc(sqrt (10.^( snr /10))); //
T h e o r i t i c a l BER o f BPSK & QPSK

71 end

72

73 // end
74 snr =1:1:10;

75 plot2d(snr ,BER_bpsk ,5,logflag=” n l ”);// p l o t s i m u l a t e d
BER o f BPSK over AWGN channe l

76 plot2d(snr ,BER_qpsk ,2,logflag=” n l ”);// p l o t s i m u l a t e d
BER o f QPSK over AWGN channe l

77 plot2d(snr ,theoryBer ,3,logflag=” n l ”);// P lo t
t h e o r i t i c a l BER o f QPSK and BPSK over AWGN
channe l

78 mtlb_axis ([0 20 10^-5 0.5]);// a x i s
79 xgrid (10);

80 xtitle( ’ B i t Er ro r Rate p l o t f o r BPSK & QPSK
Modulat ion ’ , ’SNR ’ , ’BER ’ ) ;// t i t l e o f p l o t

81

82

83 legend ([ ’ BER sim BPSK ’ ; ’ BER sim QPSK ’ ; ’ BER Theory ’ ])
;// l e g e n d

84 // This e x p e r i m e n t s r e s u l t s p l o t o f b i t e r r o r r a t e (
BER) compar i son o f s i m u l a t e d BPSK over AWGN
channe l , s i m u l a t e d QPSK over AWGN channe l and
t h e o r i t i c a l BER o f BPSK and QPSK

85 // I t w i l l t ake few minutes to g e t p l o t s as 100000
b i t s a r e a p p l i e d as an input to g e t b e t t e r p l o t s
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Experiment: 3

Effect of various channel on
transmitted data using different
modulation techniques.

Scilab code Solution 3.1 BER BPSK Rayleigh fading channel

1 // Er ro r r a t e pe r f o rmance o f BPSK modulated s i g n a l
ove r on ly AWGN channe l and AWGN and Ray l e i gh
channe l both

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);// Randomly g e n e r a t e d

Symbolsfrom 0 to 1 with un i fo rm d i s t r i b u t i o n
7

8 bpsk_mod =2*data1 -1; //BPSK Modulat ion
9 snr =1:20; // s i g n a l to No i s e Rat io

10 for k=1:1: length(snr)

11

12 H1=1/ sqrt (2)*(rand(1,length(bpsk_mod), ’
normal ’ )+%i*(rand(1,length(bpsk_mod), ’
normal ’ )));// Ray l e i gh f a d i n g g e n e r a t i o n
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13

14 noise =1/ sqrt (2) *(10^( -(k/20)))*(rand(1,

length(bpsk_mod), ’ normal ’ )+%i*(rand(1,
length(bpsk_mod), ’ normal ’ )));// White
Gauss ian No i s e g e n e r a t i o n

15

16 rec1_bpsk=bpsk_mod+noise;//BPSK
modulated s i g n a l ove r AWGN channe l

17 rec1_bpsk_ray1= H1.* bpsk_mod+noise;//
BPSK modulated s i g n a l ove r AWGN
channe l and Ray l e i gh Fading
channe l

18 rec1_bpsk_ray=conj(H1).* rec1_bpsk_ray1

;// m u l t i p l i c a t i o n with c o n j u g a t e o f
r a y l e i g h f a d i n g to n u l l i f y phase

because o f Ray l e i gh Fading
19 // r e c 1 b p s k r a y=r e c 1 b p s k r a y 1 . / ( H1 . ∗

c o n j (H1) ) ;
20

21 rec_data_bpsk =[]; rec_ray_bpsk =[];

22

23 for i=1:1: length(data1)//BPSK Demodulat ion
o f r e c e i v e d s i g n a l ove r AWGN channe l

24 if real(rec1_bpsk(i)) >=0

25 demod_out_bpsk =1;

26 else real(rec1_bpsk(i))<0

27 demod_out_bpsk =0;

28 end

29 rec_data_bpsk =[ rec_data_bpsk

demod_out_bpsk ]; // Rece ived s i g n a l
30

31 if real(rec1_bpsk_ray(i)) >=0 //BPSK
Demodulat ion o f r e c e i v e d s i g n a l ove r
AWGN channe l and Ray l e i gh channe l

32 demod_ray_bpsk =1;

33 else real(rec1_bpsk_ray(i)) <0

34 demod_ray_bpsk =0;

35 end
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36 rec_ray_bpsk =[ rec_ray_bpsk

demod_ray_bpsk ]; // // Rece ived s i g n a l
37 end

38

39 errB =0; errC =0;

40 for i=1: sym

41

42 if rec_data_bpsk(i)== data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g on ly AWGN Channel

43 errB=errB;

44 else

45 errB=errB +1;

46 end

47

48 BER_bpsk(k)=errB/sym;//BER at r e c e i v e r by
c o n s i d e r i n g on ly AWGN Channel

49

50 if rec_ray_bpsk(i)==data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g AWGN Channel and Ray l e i gh
channe l

51 errC=errC;

52 else

53 errC=errC +1;

54 end

55

56 BER_bpsk_ray(k)=errC/sym;//BER at r e c e i v e r
by c o n s i d e r i n g AWGN Channel and r a y l e i g h
channe l

57 end end

58

59 // end
60 snr =1:1:20;

61 plot2d(snr ,BER_bpsk ,5,logflag=” n l ”);
62 plot2d(snr ,BER_bpsk_ray ,3,logflag=” n l ”);
63 mtlb_axis ([0 20 10^-5 0.5]);

64 xgrid (10);
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65 xtitle( ’ B i t Er ro r Rate p l o t f o r BPSK modulated
s i g n a l ove r AWGN channe l and AWGN and Ray l e i gh
channe l both ’ , ’SNR ’ , ’BER ’ ) ;

66 legend ([ ’BER BPSK AWGN ’ ; ’BER BPSK AWGN & Ray l e i gh ’ ])
;

67 // This expe r iment r e s u l t s p l o t o f e r r o r r a t e
pe r f o rmance o f BPSK modulated s i g n a l ove r AWGN
channe and AWGN and Ray l e i gh channe l both .

68 // This expe r iment w i l l t ake some t ime to d i s p l a y
p l o t as h i g h e r no . o f b i t s e n t e r e d as an input to

g e t b e t t e r p l o t s .

Scilab code Solution 3.2 BER QPSK Rayleigh channel

1 // Er ro r r a t e pe r f o rmance o f QPSK modulated s i g n a l
ove r on ly AWGN channe l and AWGN and Ray l e i gh
channe l both

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 M=4;

7 qpsk_mod =[]; i_phase =[];

8 data1=grand(1,sym ,” u in ” ,0,1);//Random Symbol
g e n e r a t i o n from 0 to 1 with un i fo rm d i s t r i b u t i o n

9 for j=1:2: length(data1)// S e p e r a t i o n o f I & Q
component

10 i_phase =2* data1(j) -1; // BPSK modulat ion o f I
phase component

11 q_phase =2* data1(j+1) -1; //BPSK modulat ion o f Q
phase component

12 temp=i_phase+%i*q_phase;// combin ing o f I phase
and Q phase component f o r QPSK modulat ion

13 qpsk_mod =[ qpsk_mod temp]; //QPSK modulated s i g n a l
14 end
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15

16 snr =1:5:41; // S i g n a l to No i s e Rat io
17 for k=1: length(snr)

18 H=1/ sqrt (2)*(rand(1,length(qpsk_mod), ’ normal
’ )+%i*(rand(1,length(qpsk_mod), ’ normal ’ ))
);// Ray l e i gh f a d i n g g e n e r a t i o n

19

20 noise1 =1/ sqrt (2) *(10^( -(k/20)))*(rand(1,

length(qpsk_mod), ’ normal ’ )+%i*(rand(1,
length(qpsk_mod), ’ normal ’ )));// White
Gauss ian No i s e g e n e r a t i o n f o r QPSK

21

22 rec1_qpsk=qpsk_mod+noise1;//QPSK
modulated s i g n a l ove r AWGN channe l

23 rec1_qpsk_ray1= H.* qpsk_mod+noise1;

//BPSK modulated s i g n a l ove r AWGN
channe l and Ray l e i gh Fading

channe l
24 rec1_qpsk_ray=conj(H).* rec1_qpsk_ray1

;// m u l t i p l i c a t i o n with c o n j u g a t e
o f r a y l e i g h f a d i n g to n u l l i f y
phase because o f Ray l e i gh Fading

25

26 rec_data_qpsk =[]; rec_data_qpsk_ray

=[];

27

28 rec1_i=real(rec1_qpsk);// S e p e r a t i o n
o f I phase and Q phase comopnent
o f r e c e i v e d QPSK modulated s i g n a l

29 rec1_q=imag(rec1_qpsk);

30

31 rec1_i_ray=real(rec1_qpsk_ray);//
S e p e r a t i o n o f I phase and Q phase

comopnent o f r e c e i v e d QPSK
modulated s i g n a l

32 rec1_q_ray=imag(rec1_qpsk_ray);

33 //
34 for i=1: length(rec1_i)//QPSK Demodulat ion :
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BPSK demodulat ion o f I phase and Q phase
components

35 if rec1_i(i) >=0

36 demod_out_i =1;

37 else rec1_i(i)<0

38 demod_out_i =0;

39 end

40 if rec1_q(i) >=0

41 demod_out_q =1;

42 else rec1_q(i)<0

43 demod_out_q =0;

44 end

45 if rec1_i_ray(i) >=0

46 demod_out_i_ray =1;

47 else rec1_i(i)<0

48 demod_out_i_ray =0;

49 end

50 if rec1_q_ray(i) >=0

51 demod_out_q_ray =1;

52 else rec1_q_ray(i)<0

53 demod_out_q_ray =0;

54 end

55 rec_data_qpsk =[ rec_data_qpsk demod_out_i

demod_out_q ]; //QPSK Demodulated s i g n a l
56 rec_data_qpsk_ray =[ rec_data_qpsk_ray

demod_out_i_ray demod_out_q_ray ]; //
QPSK Demodulated s i g n a l

57 end

58

59 errA =0; errB =0;

60 for i=1: sym

61 if rec_data_qpsk(i)== data1(i)

62 errA=errA;

63 else

64 errA=errA +1;

65 end

66 end

67 BER_qpsk(k)=errA/sym;// BER o f QPSK
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68

69 for i=1: sym

70 if rec_data_qpsk_ray(i)==data1(i)

71 errB=errB;

72 else

73 errB=errB +1;

74 end

75

76 BER_qpsk_ray(k)=errB/sym;//BER o f BPSK
77 end

78 // theo ryBer = 0 . 5∗ e r f c ( s q r t ( 1 0 . ˆ ( sn r /10) ) ) ; //
T h e o r i t i c a l BER o f BPSK & QPSK

79 end

80

81 // end
82 snr =1:5:41;

83 plot2d(snr ,BER_qpsk ,5,logflag=” n l ”);// p l o t s i m u l a t e d
BER o f BPSK over AWGN channe l

84 plot2d(snr ,BER_qpsk_ray ,2,logflag=” n l ”);// p l o t
s i m u l a t e d BER o f QPSK over AWGN channe l

85 // p l o t 2 d ( snr , theoryBer , 3 , l o g f l a g =”n l ”) ; / / P lo t
t h e o r i t i c a l BER o f QPSK and BPSK over AWGN
channe l

86 mtlb_axis ([0 40 10^-5 0.5]);// a x i s
87 xgrid (10);

88 xtitle( ’ B i t Er ro r Rate p l o t f o r QPSK over AWGN
channe l & AWGN and Ray l e i gh channe l both ’ , ’SNR ’ ,

’BER ’ ) ;// t i t l e o f p l o t
89

90 legend ([ ’BER QPSK AWGN ’ ; ’BER QPSK AWGN & Ray l e i gh ’ ])
;// l e g e n d

91 // This e x p e r i m e n t s r e s u l t s p l o t o f b i t e r r o r r a t e (
BER) compar i son o f s i m u l a t e d QPSK over AWGN
channe l , s i m u l a t e d QPSK over AWGN channe l and
Ray l e i gh f a d i n g channe l .

92 // I t w i l l t ake few minutes to g e t p l o t s as 10000
b i t s a r e a p p l i e d as an input to g e t b e t t e r p l o t s
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Scilab code Solution 3.3 1

1 // Er ro r r a t e pe r f o rmance o f BPSK modulated s i g n a l
ove r on ly AWGN channe l and AWGN and Ray l e i gh
channe l both

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);// Randomly g e n e r a t e d

Symbolsfrom 0 to 1 with un i fo rm d i s t r i b u t i o n
7

8 bpsk_mod =2*data1 -1; //BPSK Modulat ion
9 snr =1:20; // s i g n a l to No i s e Rat io

10 for k=1:1: length(snr)

11

12 H1=1/ sqrt (2)*(rand(1,length(bpsk_mod), ’
normal ’ )+%i*(rand(1,length(bpsk_mod), ’
normal ’ )));// Ray l e i gh f a d i n g g e n e r a t i o n

13

14 noise =1/ sqrt (2) *(10^( -(k/20)))*(rand(1,

length(bpsk_mod), ’ normal ’ )+%i*(rand(1,
length(bpsk_mod), ’ normal ’ )));// White
Gauss ian No i s e g e n e r a t i o n

15

16 rec1_bpsk=bpsk_mod+noise;//BPSK
modulated s i g n a l ove r AWGN channe l

17 rec1_bpsk_ray1= H1.* bpsk_mod+noise;//
BPSK modulated s i g n a l ove r AWGN
channe l and Ray l e i gh Fading
channe l

18 rec1_bpsk_ray=conj(H1).* rec1_bpsk_ray1

;// m u l t i p l i c a t i o n with c o n j u g a t e o f
r a y l e i g h f a d i n g to n u l l i f y phase
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because o f Ray l e i gh Fading
19 // r e c 1 b p s k r a y=r e c 1 b p s k r a y 1 . / ( H1 . ∗

c o n j (H1) ) ;
20

21 rec_data_bpsk =[]; rec_ray_bpsk =[];

22

23 for i=1:1: length(data1)//BPSK Demodulat ion
o f r e c e i v e d s i g n a l ove r AWGN channe l

24 if real(rec1_bpsk(i)) >=0

25 demod_out_bpsk =1;

26 else real(rec1_bpsk(i))<0

27 demod_out_bpsk =0;

28 end

29 rec_data_bpsk =[ rec_data_bpsk

demod_out_bpsk ]; // Rece ived s i g n a l
30

31 if real(rec1_bpsk_ray(i)) >=0 //BPSK
Demodulat ion o f r e c e i v e d s i g n a l ove r
AWGN channe l and Ray l e i gh channe l

32 demod_ray_bpsk =1;

33 else real(rec1_bpsk_ray(i)) <0

34 demod_ray_bpsk =0;

35 end

36 rec_ray_bpsk =[ rec_ray_bpsk

demod_ray_bpsk ]; // // Rece ived s i g n a l
37 end

38

39 errB =0; errC =0;

40 for i=1: sym

41

42 if rec_data_bpsk(i)== data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g on ly AWGN Channel

43 errB=errB;

44 else

45 errB=errB +1;

46 end

47
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48 BER_bpsk(k)=errB/sym;//BER at r e c e i v e r by
c o n s i d e r i n g on ly AWGN Channel

49

50 if rec_ray_bpsk(i)== data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g AWGN Channel and Ray l e i gh
channe l

51 errC=errC;

52 else

53 errC=errC +1;

54 end

55

56 BER_bpsk_ray(k)=errC/sym;//BER at r e c e i v e r
by c o n s i d e r i n g AWGN Channel and r a y l e i g h
channe l

57 end end

58

59 // end
60 snr =1:1:20;

61 plot2d(snr ,BER_bpsk ,5,logflag=” n l ”);
62 plot2d(snr ,BER_bpsk_ray ,3,logflag=” n l ”);
63 mtlb_axis ([0 20 10^-5 0.5]);

64 xgrid (10);

65 xtitle( ’ B i t Er ro r Rate p l o t f o r BPSK modulated
s i g n a l ove r AWGN channe l and AWGN and Ray l e i gh
channe l both ’ , ’SNR ’ , ’BER ’ ) ;

66 legend ([ ’BER BPSK AWGN ’ ; ’BER BPSK AWGN & Ray l e i gh ’ ])
;

67 // This expe r iment r e s u l t s p l o t o f e r r o r r a t e
pe r f o rmance o f BPSK modulated s i g n a l ove r AWGN
channe and AWGN and Ray l e i gh channe l both .

68 // This expe r iment w i l l t ake some t ime to d i s p l a y
p l o t as h i g h e r no . o f b i t s e n t e r e d as an input to

g e t b e t t e r p l o t s .
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Experiment: 4

Trunking Theory for
Probability of blocking(Erlang
B) and probability of delay(
Erlang C).

Scilab code Solution 4.1 Traffic calculation inErlang B and Erlang C sys-
tem

1 //Exp−4 C a l c u l a t e s maximum t r a f f i c i n t e n s i t y and
maximum no . o f u s e r s accomodated i n Er lang B and
Er lang C system f o r g i v e n no o f c h a n n e l s

2 clc;

3 clear;

4 xdel(winsid ());

5

6 function [p1]= erlangB(A1,c1)// c a l c u l a t e b l o c k i n g
p r o b a b i l i t y f o r Er lang B system

7 pr2 =0;

8 pr1=A1^c1/factorial(c1);

9 for k=1:c1

10 pr2=pr2+(A1^k/factorial(k));

11 end
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12 // A1=A1+1;
13 p1=pr1/pr2;

14 endfunction

15

16 function [p2]= erlangC(A2,c2)// c a l c u l a t e
p r o b a b i l i t y o f b l o cked c a l l d e l ayed i n Er lang C

system
17 temp_1 =0;

18 for k=0:c2 -1

19 temp_1=temp_1+A2^k/factorial(k);

20 end

21 denominator=A^c2+( factorial(c2)*(1-(A2/c))*temp_1);

22 p2=A2^c2/denominator;

23 endfunction

24

25 pr_blocking=input( ’ e n t e r p r o b a b i l i t y o f b l o c k i n g ’ );
// e n t e r p r o b a b i l i t y o f b l o c k i n g f o r p e r t i c u l a r
system

26 pr_delay=input( ’ e n t e r p r o b a b i l i t y o f b l o c k c a l l
d e l a y ’ );// e n t e r p r o b a b i l i t y o f b l o cked c a l l
d e l ay ed f o r p a r t i c u l a r system

27 y=input( ’ e n t e r c a l l r a t e ’ );// Average no . o f c a l l s
per minute

28 H=input( ’ e n t e r the ave rage c a l l d u r a t i o n ’ ); //
Average c a l l d u r a t i o n i n minute

29 c=input(” e n t e r no . o f c h a n n e l s ”);// Enter no . o f
c h a n n e l s

30 disp(”no . o f channe l=”);
31 disp(c);

32 Au=y*H;// T r a f f i c i n t e n s i t y per u s e r
33

34 p=0;

35 for A=1:1:100

36 while(p<pr_blocking)// Find maximum t r a f f i c
i n t e n s i t y f o r e n t e r e d b l o c k i n g
p r o b a b i l i t y p r b l o c k i n g

37 [p]= erlangB(A,c)// c a l l i n g f u n c t i o n e r l angB
38 A=A+1;
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39 end

40 disp(pr_blocking , ’ f o r b l o c k i n g p r o b a b i l i t y o f ’
);// d i s p l a y b l o c k i n g p r o b a b i l i t y

41 disp(A-1, ’Maximum t r a f f i c i n t e n s i t y i s ’ );//
d i s p l a y max . t r a f f i c i n t e n s i t y

42 u=(A-1)/Au;// no . o f u s e r s c a l c u l a t i o n
43 disp(u,”no . o f u s e r s a r e accomodated ”);//

d i s p l a y maximum no . o f u s e r s accomodated i n
Er lang B system

44 break;

45 end //
46 p=0;

47 for A=1:1:100

48 while(p<pr_delay)// Find maximum t r a f f i c
i n t e n s i t y f o r e n t e r e d b l o c k i n g p r o b a b i l i t y
p r b l o c k i n g

49 [p]= erlangC(A,c)// c a l l i n g f u n t i o n to
c a l c u l a t e e r l a n g C p r o b a b i l i t y

50 A=A+1;

51 end

52 disp(pr_delay , ’ f o r b l o c k c a l l d e l a y
p r o b a b i l i t y o f ’ );// d i s p l a y b l o c k i n g
p r o b a b i l i t y

53 disp(A-1, ’Maximum t r a f f i c i n t e n s i t y i s ’ );//
d i s p l a y max . t r a f f i c i n t e n s i t y

54 u=(A-1)/Au;

55 disp(u,”no . o f u s e r s a r e accomodated ”);//
d i s p l a y maximum no . o f u s e r s accomodated i n
Er lang C system

56 break;

57 end

58 // Enter b l o c k i n g p r o b a b i l i t y p r b l o c k i n g =0.01
59 // Enter p r o b a b o l i t y o f b l o c k c a l l d e l a y p r d e l a y

=0.1
60 // Enter c a l l r a t e= 3/60
61 // e n t e r c a l l d u r a t i o n= 2( i n minute )
62 // Enter no o f c h a n n e l s 50
63
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64 // Output :
65 // no . o f channe l= 5 0 .
66

67 // f o r b l o c k i n g p r o b a b i l i t y o f 0 . 0 1
68 // Maximum t r a f f i c i n t e n s i t y i s 3 8 .
69 // no . o f u s e r s a r e accomodated 3 8 0 .
70

71 // f o r b l o c k c a l l d e l a y p r o b a b i l i t y o f 0 . 1
72 // Maximum t r a f f i c i n t e n s i t y i s 4 1 .
73 // no . o f u s e r s a r e accomodated 4 1 0 .
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Experiment: 5

Walsh Code generation

Scilab code Solution 5.1 Walsh code generation and spreading and de-
spreading using Walsh code

1 // Walsh Code g e n e r a t i o n
2 // Spread ing and d e s p r e a d i n g o f i n f o r m a t i o n f o r t h r e e

u s e r s u s i n g Walsh code
3 clc;

4 clear;

5 xdel(winsid ());

6 a=input( ’ e n t e r the number o r d e r o f 2 : ’ );// input
r e q u i r e d l e n g t h o f Walsh Code which i s a lways
o r d e r o f 2

7 c1=[1 -1 -1]; // i n f o r m a t i o n o f u s e r 1
8 c2=[-1 1 -1]; // i n f o r m a t i o n o f u s e r 2
9 c3=[1 -1 1]; // i n f o r m a t i o n o f u s e r 3

10 W=[0 0;0 1]; // Bas i c Walsh code Matr ix
11 m=2;

12 %n=2^m;

13 for m =2:1:a

14 for i = 1:1:a// g e n r a t i o n o f walsh code matr ix o f
e n t e r e d l e n g t h

15 if i==2^m

16 Winv=bitcmp(W,1);
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17 W=[W W;W Winv];

18 end

19

20 end

21 end

22 temp =0;

23 W1=[];

24 disp(W)

25 for i=1:1: length(W(1,:))// 0 r e p l a c e d by −1 i n walsh
code matr ix

26 for j=1:1: length(W(1,:))

27 if W(i,j)==0 then

28 W(i,j)=W(i,j) -1;

29 else W(i,j)=W(i,j)+0;

30

31 end

32

33 end

34

35 end

36 // d i s p (W)
37 // s p r e a d i n g u s i n g Walsh code
38 tans_c1 =[c1(1,1).*W(1,:) c1(1,2).*W(1,:) c1(1,3).*W

(1,:)]; // s p r e a d i n g o f u s e r 1 i n f o r m a t i o n u s i n g
f i r s t row o f Walsh Matr ix

39 tans_c2 =[c2(1,1).*W(2,:) c2(1,2).*W(2,:) c2(1,3).*W

(2,:)]; // s p r e a d i n g o f u s e r 2 i n f o r m a t i o n u s i n g
second row o f Walsh Matr ix

40 tans_c3 =[c3(1,1).*W(3,:) c3(1,2).*W(3,:) c3(1,3).*W

(3,:)]; // s p r e a d i n g o f u s e r 3 i n f o r m a t i o n u s i n g
t h i r d row o f Walsh Matr ix

41 aa1=tans_c1 (1,1:a)+tans_c2 (1,1:a)+tans_c3 (1,1:a);

42 aa2=tans_c1 (1,(a+1) :(2*a))+tans_c2 (1,(a+1) :(2*a))+

tans_c3 (1,(a+1) :(2*a));

43 aa3=tans_c1 (1 ,((2*a))+1:(3*a))+tans_c2 (1 ,((2*a))

+1:(3*a))+tans_c3 (1 ,((2*a))+1:(3*a));

44 tans_sig =[aa1 aa2 aa3]; // t r a n s m i s s i o n o f sp r eaded
s i g n a l

28



45 det_code1=input( ’ e n t e r d e t e c t i o n code ’ );// Enter any
i n t e g e r no . r a n g i n g up to no . o f rows o f walsh
matr ix

46

47 select det_code1 // s e l e c t c a s e to g e t i n f o r m a t i o n
o f e n t e r e d u s e r

48 case 1

49 det_code=W(1,:);

50 case 2

51 det_code=W(2,:);

52 case 3

53 det_code=W(3,:);

54 else

55 det_code=W(4,:);

56 disp( ’ i n v a l i d d e t e c t i o n code ’ );// d i s p l a y
message f o r i nput o f i n v a l i d d e t e c t i o n
code

57 end

58

59

60 rec_sig =[ det_code (1,:).*aa1 det_code (1,:).*aa2

det_code (1,:).*aa3]; // r e c e i v e d s i g n a l m u l t i p l i e d
with d e t e c t i o n code

61 det_sig =[ rec_sig (1,1)+rec_sig (1,2)+rec_sig (1,3)+

rec_sig (1,4) rec_sig (1,5)+rec_sig (1,6)+rec_sig

(1,7)+rec_sig (1,8) rec_sig (1,9)+rec_sig (1,10)+

rec_sig (1,11)+rec_sig (1 ,12)]; // d e t e c t i o n o f
i n f o r m a t i o n from r e c e i v e d s i g n a l

62 final_sig =(1/4)*det_sig;

63 disp( ’ t r a n s m i t e d i n f o r m a t i o n i s ’ );
64 disp(final_sig)// i n f o r m a t i o n transmmited u s i n g

s e l e c t e d v a l i d d e t e c t i o n code
65 // input a=4
66 //W=[0 0 0 0 ; 0 1 0 1 ; 0 0 1 1 ; 0 1 1 0 ]
67 // d e t e c t i o n code =2 , output=−1 1−1( i n f o r m a t i o n o f

u s e r 2 sp r eaded with second row o f Walsh Matr ix )
68 // d e t e c t i o n code > 3 , r e s u l t s : code not a v a i l a b l e

0 0 0
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Experiment: 6

PN sequence generation.

Scilab code Solution 6.1 3 bit PN sequence generation and spreading and
despreading using PN sequence and shifted PN sequence

1 // Spread ing o f s equence u s i n g PN sequence and
d e s p r e a d i n g o f s equence u s i n g PN sequence and
s h i f t e d PN sequence

2 clc;

3 clear;

4 xdel(winsid ());

5 // Gene ra t i on o f 7 b i t PN sequence
6 // C o e f f i c i e n t o f po l ynomia l
7 a1=1;

8 a2=1;

9 a3=1;

10 // I n i t i a l s t a t e s o f f l i p f l o p
11 R(1)=1;

12 R(2)=0;

13 R(3)=0;

14 m=3;

15 disp( ’ output a f t e r eve ry c l o c k p u l s e ’ );
16 for i=1:((2^m) -1) // s h i f t o f b i t i n each r e g i s t e r f o r

eve ry c l o c k p u l s e
17 r1=R(1);
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18 r2=R(2);

19 r3=R(3);

20 PN(i)=R(3);

21 // i f ( a1==0)
22 R1=bitxor(r2 ,r3);// input o f r e g i s t e r i s modulo2

a d d i t i o n o f R2 and R3
23 R(3)=R(2);

24 R(2)=R(1);

25 R(1)=R1;

26

27 disp(R);

28 end

29 disp( ’PN sequence i s ’ );
30 disp(PN);// D i s p l a y 7 b i t PN sequence
31 c1=[1 -1 -1]; // i n f o r m a t i o n o f u s e r 1
32 for j=1:1: length(PN)// 0 r e p l a c e d with −1 i n PN

sequence
33 if PN(j)==0 then

34 PN(j)=PN(j) -1;

35 else PN(j)=PN(j)+0;

36 end

37

38 end

39 disp(PN);

40 spreaded_sig =[c1(1).*PN’ c1(2).*PN ’ c1(3).*PN ’] //
Spread ing o f data o f u s e r 1 u s i n g PN sequence

41 detect_code =[ spreaded_sig (1:7).*PN’ spreaded_sig

(8:14) .*PN’ spreaded_sig (15:21) .*PN ’]; // at
r e c e i v e r , r e c i e v e d sp r eaded s i g n a l m u l t i p l i e d
with PN sequnce

42 corr_code =[sum(detect_code (1:7)) sum(detect_code

(8:14)) sum(detect_code (15:21))];

43 rec_sig =(1/7) .* corr_code;// g e t i n f o r m a t i o n form
r e c e i v e d s i g n a l

44 disp( ’ r e c e i v e d s i g n a l with c o r r e c t PN sequence i s ’ );
45 disp(rec_sig);// r e c e i v e d data o f u s e r 1 at r e c e i v e r

: 1 −1 −1
46 // Despread ing with s h i f t e d PN sequence
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47 shift_fact=input( ’ e n t e r the s h i f t i n g f a c t o r ’ );
48 l=1;

49 k=shift_fact -1;

50 for i=1:1: length(PN) // g e n e r a t i o n o f s h i f t e d PN
sequence as per e n t e r e d s h i f t i n g f a c t o r

51 if i<= shift_fact

52 shift_seq(i)=PN(length(PN)-k);

53 k=k-1;

54 else i>shift_fact

55 shift_seq(i)=PN(l);

56 l=l+1;

57 end

58 end

59 disp( ’ s h i f t e d s equence i s ’ );
60 disp(shift_seq ’);// d i s p l a y s h i f t e d s equence
61 // d e s p r e a d i n g u s i n g s h i f t e d PN sequence
62 detect_shift_code =[ spreaded_sig (1:7).*shift_seq ’

spreaded_sig (8:14) .*shift_seq ’ spreaded_sig

(15:21) .*shift_seq ’];

63 corr_shift_code =[sum(detect_shift_code (1:7)) sum(

detect_shift_code (8:14)) sum(detect_shift_code

(15:21))];

64 rec_shift_sig =(1/7) .* corr_shift_code;

65 disp(” r e c i e v e d s i g n a l with s h i f t e d PN sequence i s
”);

66 disp(rec_shift_sig);// I n v a l i d data r e c e i v e d
beacus e s i g n a l was de sp reded with s h i f t e d PN
sequence

67 disp( ’ which i s not v a l i d t r a n s m i t t e d s i g n a l ’ );
68 // R e s u l t :
69 // output o f PN sequence g e n e r a t o r a f t e r each

c l o c k p u l s e
70 // PN =0 0 1 0 1 1 1 r e p l a c e 0 with −1,PN=−1 −1 1

−1 1 1 1
71 // e n t e r e d s h i f t i n g f a c t o r =3 , s h i f t e d PN sequence=

1 1 1 −1 −1 1 −1
72 // I n v a l i d s i g n a l i s r e c e i v e d when d e s p r e a d i n g i s

with s h i f t e d v e r s i o n o f PN
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73 // r e c s h i f t s i g =− 0 . 1 4 28 5 7 1 0 . 14 2 8 5 7 1
0 . 1 42 8 5 7 1
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Experiment: 7

Equalization.

Scilab code Solution 7.1 Adaptive equalization using LMS filter

1 // Leas t Mean Square a d a p t i v e e q u a l i z e r
2 clc;

3 clear all;

4 xdel(winsid ());

5 numPoints = 500;

6 numTaps = 1; // channe l o r d e r
7 Mu = 0.01; // i t e r a t i o n s t e p s i z e
8

9 // input i s g u a s s i a n
10 x = rand(numPoints ,1, ’ normal ’ ) + %i*rand(numPoints

,1, ’ normal ’ );
11 // choo s e channe l to be random uni fo rm
12 h = rand(numTaps ,1) + %i*rand(numTaps , 1);

13

14 h = h/max(abs(h)); // n o r m a l i z e channe l
15 // c o n v o l v e channe l with the input
16 d = filter(h, 1, x);

17

18 // i n i t i a l i z e v a r i a b l e s
19 w = [];

20 y = [];
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21 in = [];

22 e = []; // e r r o r , f i n a l r e s u l t to be computed
23

24 w = zeros(numTaps +1,1) + %i*zeros(numTaps +1,1);

25 kk=1;

26 aa(kk ,:)=w’;

27 //LMS Adaptat ion
28 for n = numTaps +1 : numPoints

29

30 // s e l e c t pa r t o f t r a i n i n g input
31 in = x(n : -1 : n-numTaps) ;

32 y(n) =w’* in;

33

34 // compute e r r o r
35 e(n) = d(n)-y(n);

36

37 // update tap s
38

39 w = w+ Mu*( real(e(n)*conj(in)) - %i*imag(e(n)*conj(

in)) );

40

41 kk=kk+1;

42 aa(kk ,:)=w’;

43 end

44

45 // P lo t r e s u l t s
46 figure;

47 iter =1:500

48 plot2d(iter ,abs(e),5,logflag=”nn”);
49 title([ ’LMS Adaptat ion Lea rn ing Curve Using Mu =

0 . 0 1 ’ ]);
50 xlabel( ’ I t e r a t i o n Number ’ );
51 ylabel( ’ Output Es t imat i on Er ro r i n dB ’ );
52 figure;

53 plot3d(abs(aa(:,1)),abs(aa(:,2)),abs(e));

54 title( ’LMS adapt i on curve with we ight f a c t o r s ’ );
55 xlabel( ’ a d a p t i v e we ight f a c t o r 1 ’ );
56 ylabel( ’ a d a p t i v e we ight f a c t o r 2 ’ );
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57 zlabel( ’ mean squa r e e r r o r ’ );
58 // Output shows p l o t o f MSE with no . o f i t e r a t i o n s

i n f i g u r e 1 and 3D p l o t o f MSE with we ight
f a c t o r s
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Experiment: 8

Channel Coding using Linear
Block Code

Scilab code Solution 8.1 Linear Block Coding over AWGN channel

1

2

3 // t h i s i s a l i n e a r b l o c k cod ing and decod ing ove r
awgn channe l

4 // 4 b i t s i nput s i g n a l i s coded with l i n e a r b l o c k
code ( 4 , 7 ) , 7 b i t coded s i g n a l i s t r a n s m i t t e d
ove r awgn channe l and at r e c e i v e r s i d e s i g n a l i s
decoded . I f t h e r e i s e r r o r i n one b i t , l i // near
b l o c k code c o r r e c t tha t e r r o r and o r i g i n a l
t r a n s m i t t e r code i s r e c e v e d .

5 // I f e r r o r i s i n more than one b i t , code i s not
c o r r e c t e d so wrong code i s r e c i e v e d

6 clc;

7 clear all;

8 xdel(winsid ());

9 global P n k;

10

11 n=7; // l e n g t h o f coded input
12 k=4; // l e n g t h o f i nput
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13 P=[1 1 0; 0 1 1; 1 0 1;1 1 1]; // p a r i t y matr ix o f
s i z e k ∗ ( n−k ) to be

14 // s e l e c t e d so tha t
the s y s t e m a t i c g e n e r a t o r

15 // matr ix i s l i n e a r l y
independent or f u l l rank

16 // matr ix
17

18 // ( n , k ) l i n e a r b l o c k code where k − no . o f i nput
data b i t s and n−no . o f o/p

19 // data b i t s . code r a t e=k/n
20 // x i s an input v e c t o r c o n t a i n i n g k b i t s
21

22 // This i s an l i n e a r b l o c k encod ing f u n c t i o n
23 function y1=linblkcode(x);

24 global P n k;

25 n=7;

26 k=4;

27 P=[1 1 0; 0 1 1; 1 0 1;1 1 1]; // p a r i t y matr ix
28 //x=[0 1 1 0 ] ;
29

30 //G=[ ] ; // % Generator matr ix k∗n
31 G=[eye(k,k) P];

32

33 y1=zeros(1,n);

34 for i=1:k// l i n e a r b l o c k cod ing
35 var(i,:)=x(1,i) & G(i,:);

36 var(i,:)=bool2s(var(i,:));

37 y1(1,:)=bitxor(var(i,:),y1(1,:));// coded s i g n a l
38 end

39

40 endfunction

41

42

43 // %This i s a l i n e a r b l o c k syndrome decod ing f u n c t i o n
f i l e %

44

45 function x1=linblkdecoder(y)
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46 //% he r e y i s r e c i e v e d v e c t o r 7 b i t s l ong
47

48 //% ( 7 , 4 ) l i n e a r b l o c k code
49 global P n k;

50

51

52 //H=[ ] ; //% PARITY CHECK MATRIX
53

54 H=[P’ eye((n-k) ,(n-k))];

55 Ht=H’; // %transpose o f H
56

57 S=zeros(1,n-k); // %syndrome o f r e c i e v e d v e c t o r x
58 for i=1:n-k// decod ing o f l i n e a r b l o c k code
59 S(i)=y(1) & Ht(1,i);

60 S(i)=bool2s(S(i));

61 for j=2:n

62

63 S(i)=bitxor(S(i), bool2s ((y(j) & Ht(j,i))));

// decoded s i g n a l
64 end

65 end

66

67

68

69 //%%∗∗∗∗SYNDROME LOOK UP TABLE∗∗∗∗∗∗∗∗∗∗∗∗
70

71 //%%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
72 //%
73 if S==[0 0 0]

74 e=[0 0 0 0 0 0 0];

75 z=bitxor(y,e);

76 end

77

78 if S==[0 0 1]

79 e=[0 0 0 0 0 0 1];

80 z=bitxor(y,e);

81 end

82 if S==[0 1 0]
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83 e=[0 0 0 0 0 1 0];

84 z=bitxor(y,e);

85 end

86 if S==[1 0 0]

87 e=[0 0 0 0 1 0 0];

88 z=bitxor(y,e);

89 end

90 if S==[1 1 1]

91 e=[0 0 0 1 0 0 0];

92 z=bitxor(y,e);

93 end

94 if S==[1 0 1]

95 e=[0 0 1 0 0 0 0];

96 z=bitxor(y,e);

97 end

98 if S==[0 1 1]

99 e=[0 1 0 0 0 0 0];

100 z=bitxor(y,e);

101 end

102 if S==[1 1 0]

103 e=[1 0 0 0 0 0 0];

104 z=bitxor(y,e);

105 end

106 // d i s p ( ’ e r r o r ’ ) ;
107 // d i s p ( e ) ;
108 x1=z(1,1:k);

109 endfunction

110 snr_dB =2;

111

112 x=[1 0 0 1]; // input b i t s to the
encode r o f s i z e 1∗ k

113 y1=linblkcode(x);// // y1 i s the output
o f l i n e a r b l o c k encode r

114 n1 = 1/sqrt (2)*[rand(1,length(y1), ’ normal ’ ) + %i*

rand(1,length(y1), ’ normal ’ )]; // whi te g a u s s i a n
n o i s e g e n e r a t i o n

115 r=y1+ 10^(- snr_dB /20)*n1;// r e c e i v e d s i g n a l ove r awgn
channe l
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116 // r1=r e a l ( r )
117 rec=real(r) >=0.5; // d e t e c t i o n o f b i t 1 and 0 i n

r e c e i v e d s i g n a l
118 rec_fin=bool2s(rec);// c o n v e r t boo l ean matr ix to z e r o

one matr ix
119 // r e c e r r=r e c f i n==y1 ;
120 // n o e r r=b o o l 2 s ( r e c e r r ) ;
121 disp( ’ The i n f o r m a t i o n s i g n a l= ’ )// d i s p l a y input
122 disp(x)

123 disp( ’ The t r a n s m i t t e d encoded s i g n a l= ’ )// d i s p l a y
coded s i g n a l

124 disp(y1)

125 disp( ’ The r e c i e v e d s i g n a l= ’ )// d i s p l a y r e c e i v e d
s i g n a l

126 disp(rec_fin);

127 x1=linblkdecoder(rec_fin); // % x1 i s the
output o f the l i n e a r b l o c k decode r

128 disp( ’ The decoded s i g n a l= ’ )// d i s p l a y decoded s i g n a l
129 disp(x1);

130 if x1==x then disp( ’ one or l e s s than one e r r o r so
c o r r e c t code i s r e c e i v e d ’ );

131 else

132 disp( ’ more than one e r r o r so wrong code d e t e c t e d
’ );

133 end

134 // Output : The i n f o r m a t i o n s i g n a l i s : 1001
135 // t r a n s m i t t e d code i s : 1001001
136 // 1 . r e c e i v e d s i g n a l i s : 1 0 1 1 0 0 1 ( e . g ) ( e r r o r i n on ly

one b i t )
137 // decoded s i g n a l : 1001
138 // one or l e s s than one e r r o r so c o r r e c t code i s

r e c e i v e d
139 // 2 . r e c e i v e d s i g n a l i s : 1 0 1 1 0 1 1 ( e . g ) ( e r r o r i n more

than one b i t s )
140 // decoded s i g n a l : 1 0 1 0
141 // more than one e r r o r so wrong code i s r e c e i v e d
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Experiment: 9

Transmit and receive diversity

Scilab code Solution 9.1 Selection Diversity over AWGN channel

1 // ber pe r f o rmance with 1 , 2 and 3 r e c e i v e r antennas
ove r awgn channe l u s i n g s e l e c t i o n d i v e r s i t y

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; // no . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);// randomly g e n e r a t e d

input
7 s = 2*data1 -1; // BPSK modulat ion 0 −> −1; 1 −> 1
8 nRx = [1 2 3]; // no . o f r e c e i v i n g antennas
9 snr_dB = [1:10]; // s i g n a l to n o i s e r a t i o

10 for j = 1: length(nRx)

11 for i = 1: length(snr_dB)

12 n = 1/sqrt (2)*[rand(nRx(j),sym , ’ normal ’ ) +

%i*rand(nRx(j),sym , ’ normal ’ )]; // whi te
g a u s s i a n n o i s e

13

14 y = ones(nRx(j) ,1)*s + 10^(- snr_dB(i)/20)*n;

// r e c e i v e d s i g n a l ove r awgn channe l
15 [yHat1 ind] = mtlb_max(y,[],1);// f i n d

s t r o n g e s t r e c e i v e d s i g n a l from a l l

43



antennas
16

17 ipHat1 = real(yHat1) >0;

18 ipHat = bool2s(ipHat1);// boo l ean to z e r o one
matr ix c o n v e r s i o n

19 // e f f e c t i v e SNR
20 nErr(j,i) = size(find([data1 - ipHat ]) ,2);//

no . o f e r r o r c a l c u l a t i o n
21 end

22 end

23 simBer = nErr/sym; //BER c a l c u l a t i o n
24 // p l o t o f ber compar i son p l o t f o r 1 ,2 and 3

r e c e i v i n g antennas
25 snr_dB =1:10

26 plot2d(snr_dB ,simBer (1,:) ,5,logflag=” n l ”);
27 plot2d(snr_dB ,simBer (2,:) ,2,logflag=” n l ”);
28 plot2d(snr_dB ,simBer (3,:) ,12,logflag=” n l ”);
29 xgrid

30 legend( [ ’ 1X1 ’ ; ’ 1X2 ’ ; ’ 1 x3 ’ ]);
31 xlabel( ’ Number o f r e c e i v e antenna ’ );
32 ylabel( ’ e f f e c t i v e SNR, dB ’ );
33 title( ’SNR improvement with S e l e c t i o n Combining ’ );
34 // output p r e s e n t s BER per fo rmance compar i son p l o t s

with 1 ,2 and 3 r e c e i v i n g antennas ove r awgn
c h a n n e l s

Scilab code Solution 9.2 Maximal Ratio Combining over AWGN and Rayleigh
fading Channel

1 // BER Per formance coampar i son with one r e c e i v i v n g
atenna and two r e c e i v i n g antennas with Maximal
r a t i o Combining d i v e r s i t y t e c h n i q u e ove r awgn
channe and r a y l e i g h f a d i n g channe l

2 clc;

3 clear;
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4 xdel(winsid ());

5 sym =100000; // no . o f symbols
6 M=2;

7 data1=grand(1,sym ,” u in ” ,0,1);// input s i g n a l i s
randomly g e n e r a t e d

8 //N = 1 0 ; % number o f b i t s or symbols
9 // i p = rand ( 1 ,N) >0 .5 ; % g e n e r a t i n g 0 ,1 with e q u a l

p r o b a b i l i t y
10 s = 2*data1 -1; // BPSK modulat ion 0 −> −1; 1 −> 1
11 nRx = [1 2]; // no o f r e c e i v e r s
12 snr_dB = [1:20]; // s i g n a l to n o i s e r a t i o n i n dB
13 for jj = 1: length(nRx)

14 for ii = 1: length(snr_dB)

15 n = 1/sqrt (2)*[rand(nRx(jj),sym , ’ normal ’ ) +

%i*rand(nRx(jj),sym , ’ normal ’ )]; // whi te
g a u s s i a n n o i s e ,

16 h = 1/sqrt (2)*[rand(nRx(jj),sym , ’ normal ’ ) +

%i*rand(nRx(jj),sym , ’ normal ’ )]; //
Ray l e i gh f a d i n g channe l

17 // Channel and n o i s e No i s e a d d i t i o n
18 sD = kron(ones(nRx(jj) ,1),s);

19 y = h.*sD + 10^(- snr_dB(ii)/20)*n;//
r e c e i v e d s i g n a l ove r awgn channe l and
a y l e i g h f a d i n g channe l

20 // f i n d i n g the power o f the channe l on a l l
rx cha in

21 yHat = sum(conj(h).*y,1)./sum(h.*conj(h)

,1); // maximal r a t i o combin ing
22 // hPower1 = h . ∗ c o n j ( h ) ;
23

24 ipHat = real(yHat) >0;

25 // e f f e c t i v e SNR
26 nErr(jj,ii) = size(find([data1 -

ipHat]) ,2);// c a l c u l a t e e r r o r
27 end

28 end

29 simBer = nErr/sym; // b i t e r r o r r a t e c a l c u l a t i o n
30 // p l o t
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31 snr_dB =1:20

32 plot2d(snr_dB ,simBer (1,:) ,5,logflag=” n l ”);// snr− ber
p l o t with one r e c e i v i n g antenna

33 plot2d(snr_dB ,simBer (2,:) ,2,logflag=” n l ”);// snr− ber
p l o t with two r e c e i v i n g antennas

34 // p l o t (nRx , 1 0∗ l o g 1 0 ( EbN0EffSim ) , ’ bp− ’ , ’ LineWidth ’ , 2 )
;

35 // m t l b a x i s ( [ 1 20 0 6 ] )
36 xgrid

37 legend ([ ’ 1X1 ’ ; ’ 1X2 ’ ]);
38 xlabel( ’ Number o f r e c e i v e antenna ’ );
39 ylabel( ’ e f f e c t i v e SNR, dB ’ );
40 title( ’SNR improvement with Maximal r a t i o Combining ’

);
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Experiment: 10

Speech coding

Scilab code Solution 10.1 speech coding and Decoding using LPC

1 //Exp−10 Speech cod ing u s i n g Long Term P r e d i c t i v e
code r

2 // This code read wav f i l e and p lay o r i g i n a l s i g n a l
and compressed s i g n a l

3 // I t a l s o p l o t s o r i g i n a l s i g n a l as w e l l as
compressed s i g n a l

4

5 function [aCoeff , tcount_of_aCoeff , e] =

func_lev_durb(y, M);

6 //M=o r d e r and y i s a r r a y o f the data p o i n t o f the
c u r r e n t frame

7 sk=0; // i n i t i a l i z i n g summartion term ” sk ”
8 a=[zeros(M+1);zeros(M+1)]; // d e f i n i n g a matr ix o f

z e r o s f o r ”a” f o r i n i t .
9 //MAIN BODY OF THIS PROGRAM STARTS FROM HERE

>>>>>>>>>>>>>>
10 z=xcorr(y);

11

12 // f i n d i n g a r r a y o f R[ l ]
13 R=z( ( (length(z)+1) ./2 ) : length(z)); //R=a r r a y

o f ”R[ l ] ” , where l = 0 , 1 , . . . ( b+N)−1 %R( 1 )=R[ l a g
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=0] , R( 2 )=R[ l a g =1] , %R( 3 )=R[ l a g = 2 ] . . . e t c
14

15 //GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER
” 0 ” :

16 s=1; // s=s t e p no .
17 J(1)=R(1); // J=a r r a y o f ” J l ” , where l

= 0 , 1 , 2 . . . ( b+N) −1, J ( 1 )=J0 , J ( 2 )=J1 , J ( 3 )=J2 e t c
18

19 //GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER ”( s
−1)”

20 for s=2:M+1,

21 sk=0; // c l e a r i n g ” sk ” f o r each
i t e r a t i o n

22 for i=2:(s-1),

23 sk=sk + a(i,(s-1)).*R(s-i+1);

24 end //now we know v a l u e o f ” sk ” ,
the summation term

25 // o f f o rmu la o f c a l c u l a t i n g
”k ( l ) ”

26 k(s)=(R(s) + sk)./J(s-1);

27 J(s)=J(s-1) .*(1 -(k(s)).^2);

28

29 a(s,s)= -k(s);

30 a(1,s)=1;

31 for i=2:(s-1),

32 a(i,s)=a(i,(s-1)) - k(s).*a((s-i+1) ,(s-1));

33 end

34 end

35 // inc r ement ”b” and do same f o r next frame u n t i l end
o f f rame when

36 // combin ing t h i s code with o t h e r p a r t s o f LPC a l g o
37

38 //PREDICTION ERROR; FOR TESTING THE ABOVE PREDICTOR
39 aCoeff=a((1:s),s)’; // a r r a y o f ”a ( i , s ) ” , where

, s=M+1
40 tcount_of_aCoeff = length(aCoeff);

41

42 y_padded_for_delay_r = [y’; zeros (1,1)]; // i t i s
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padded with z e r o s to remove the e f f e c t o f d e l a y
i n f i l t e r

43 est_y_with_dummy_pad = filter ([0 -aCoeff (2:9)],1,

y_padded_for_delay_r); // = s ˆ( n ) with a cap
on page 92 o f the book

44 est_y = est_y_with_dummy_pad (2:321);

45 e = y’ - est_y; // supposed to be a whi te n o i s e
46 endfunction

47

48 function [aCoeff , b_LTopt , Topt , e_prime] =

f_ENCODER_relp(x, fs)

49 M = 8; // p r e d i c t i o n o r d e r f o r LP a n a l y s i s
50 //INITIALIZATION ;
51 b=1; // index no . o f s t a r t i n g data p o i n t o f

c u r r e n t frame
52 fsize = 20e-3; // frame s i z e ( i n m i l i s e c )
53 frame_length = round(fs .* fsize); //=number data

p o i n t s i n each f r a m e s i z e o f ”x”
54 N= frame_length - 1; //N+1 = frame l e n g t h = number

o f data p o i n t s i n each f r a m e s i z e
55

56 y_proc = filter ([1 -1], [1 -0.999], x); // pre−
p r o c e s s i n g

57 //FRAME SEGMENTATION
58 for b=1 : frame_length : (length(x) - N)

59

60 y_f = y_proc(b:b+N); // ”b+N” d e n o t e s the end
p o i n t o f c u r r e n t frame . ”y” d e n o t e s an a r r a y o f
the data p o i n t s o f the c u r r e n t f rame

61 //LP ANALYSIS [ l ev−durb ] & PREDICTION ERROR ( shor t−
term ) FILTER ;

62 [a, tcount_of_aCoeff , e_s] = func_lev_durb (y_f ,

M); // e=e r r o r s i g n a l from lev−durb proc
63 aCoeff(b: (b + tcount_of_aCoeff - 1)) = a; //

a C o e f f i s a r r a y o f ”a” f o r whole ”x”
64 //LONG−TERM LP ANALYSIS , FILTERING , AND CODING

a n a l y s i s :
65 T_min = round (fs .* 5e-3); //=t o t a l data
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p o i n t s i n 5ms o f ”x”
66 T_max = round (fs .* 15e-3);

67 c1 = 1;

68 for bs = b : 40 : b+length(y_f) -40 // sub f raming
bs = 1 2 8 1 ;

69 if bs < T_max

70 break;

71 end

72

73 Jmin(bs) = 10^9;

74

75 for T = T_min : T_max // w i t h i n 1 (
c u r r e n t ) f rame T = 4 0 ;

76 for c = 1:40 // data p o i n t s o f
c u r r e n t subframe c =1; temporary

77 sm1(c) = ( y_proc(bs+(c-1)) .*

y_proc(bs-T+(c-1))); // e s ( n )
78 sm2(c) = y_proc(bs -T+(c-1)); //=

e s ( n−T)
79 sm22(c) = sm2(c).^2;

80 end

81 q1 = sum(sm1);

82 q2 = sum(sm22);

83 b_LT(T) = -(q1./q2);

84 // J l oop :
85 for c = 1:40 // data p o i n t s o f

c u r r e n t subframe c =1; temporary
86 smJ1(c) = y_proc(bs+(c-1));

87 smJ2(c) = b_LT(T) .* y_proc(bs -T

+(c-1));

88 end

89 smJ = smJ1 + smJ2;

90 qJ = smJ .^2;

91 J(T) = sum(qJ);

92

93 if J(T) < Jmin(bs),

94 Jmin(bs) = J(T);

95 Topt(bs) = T;
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96 if b_LT(T) >=1,

97 b_LTopt(bs) = 0.9999; //
t r a n c a t i o n

98 else

99 b_LTopt(bs) = b_LT(T);

100 end

101 else

102 end

103 end //T loop ends
104 // p r e d i c t o r :
105 LT_gain = [zeros(1, Topt(bs) -1), b_LTopt(bs)

]; // as i t s a y s zˆ−T i n page 121
106 e_s_padded_for_delay_r = [e_s(c1:c1+39);

zeros(Topt(bs), 1)]; // i t i s padded with
z e r o s to remove the e f f e c t o f d e l a y i n

f i l t e r . %Topt ( bs ) no . o f ’ z ’ s and one
’ 1 ’ r e s u l t s i n t o t a l ’ Topt ( bs ) ’ amount
o f d e l a y

107 e_with_dummy_pad = filter ([1 LT_gain], 1,

e_s_padded_for_delay_r); // = 1 + 0∗ z
ˆ−1 + 0∗ zˆ−2 + . . . + b∗ zˆ−T

108 e_LT(bs:bs+39 ,1) = e_with_dummy_pad(Topt(bs

)+1 : Topt(bs)+1+39); //LT p r e d i c t e d ”
e ”

109 e(bs:bs+39, 1) = e_s(c1 : c1+39) - e_LT(bs :

bs+39);

110

111 //WEIGHTING FILTER :
112 w = [ -0.0004;

-0.0156; -0.0677;0.0545;0.6069;1.0000;0.6069;0.0545; -0.0677; -0.0156; -0.0004];

// 11 p o i n t f l a t t o p window i s
t e m p o r a r i l y chosen

113 wndd = conv(w, e(bs:bs+39)); // output s
t o t a l 50 sample s

114 x_n(bs:bs+39) = wndd (6:45); // middle 40
sample s a r e taken

115

116 //POSITION SELECTION & EXCITATION GENERATOR:
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117 for i1 = 0:3

118 for i = i1+bs : 3 : bs+i1+38;

119 x_m(i1+1,i) = x_n(i);

120 end

121

122 E_m(i1+1,1) = sum((x_m(i1+1, bs:3)).^2);

123 end

124 [E_m_max , index_max] = gsort(E_m);

125 e_prime(bs : bs+39) = x_m(index_max (4), bs:

bs+39);

126 c1 = c1 + 40;

127 end

128 end

129 endfunction

130

131 //RELP DECODER p o r t i o n :
132 function [synth_speech , synth_speech1 , LT_gain ,

e_prime_pad_for_d_r , e_prime_op_dummy_pad ,

e_prime_op , e_prime_op_pad_delay_r ,

synth_speech_dummy_pad] = f_DECODER_relp(aCoeff ,

b_LTopt , Topt , e_prime)

133 // re−c a l c u l a t i n g f r a m e l e n g t h f o r t h i s decode r
134 frame_length =9; // i n i t i a l v a l u e f o r c a l c u l a t i o n
135 for i=10: length(aCoeff)

136 if aCoeff(i) == 0

137 frame_length = frame_length + 1;

138 else break;

139 end

140 end

141 e_prime = e_prime ’; // making i t a column matr ix
f o r c o n v e n i e n c e

142

143 for b=1 : frame_length : length(aCoeff) // l e n g t h (
a C o e f f ) shou ld be very c l o s e ( i . e l e s s than a
f r a m e l e n g t h e r r o r ) to l e n g t h ( x )

144 for bs = b : 40 : b+frame_length -40 //
sub f raming

145
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146 //EXCITATION GENERATOR: not done ye t .
because e p r ime has been s e n t to t h i s
de code r d i r e c t l y . w i thout q u a n t i z a t i o n .

147 //PITCH SYNTHESIS FILTER : %has to be done
per subframe

148 LT_gain = [zeros(1, Topt(bs) -1), b_LTopt(bs)

]; // as i t s a y s zˆ−T
149 e_prime_pad_for_d_r = [e_prime(bs:bs+39);

zeros(Topt(bs), 1)]; // i t i s padded with
z e r o s to remove the e f f e c t o f d e l a y i n

f i l t e r . %Topt ( bs ) no . o f ’ z ’ s and one
’ 1 ’ r e s u l t s i n t o t a l ’ Topt ( bs ) ’ amount
o f d e l a y

150 e_prime_op_dummy_pad = filter(1, [1 LT_gain

], e_prime_pad_for_d_r); //= 1 / (1 +
0∗ zˆ−1 + 0∗ zˆ−2 + . . . + b∗ zˆ−T)

151 e_prime_op(bs:bs+39 ,1) =

e_prime_op_dummy_pad(Topt(bs)+1 : Topt(bs

)+1+39); // p i t ch−s y n t h e s i s f i l t e r
output

152 end //FORMANT SYNTHESIS FILTER :
153 e_prime_op_pad_delay_r= [e_prime_op(b : b

+159); zeros (1,1)]; // i t i s padded with
z e r o s to remove the e f f e c t o f d e l a y i n
f i l t e r

154 synth_speech_dummy_pad = filter(1, [1 aCoeff

(b+1 : b+8)], e_prime_op_pad_delay_r);

155 synth_speech1(b : b+159) =

synth_speech_dummy_pad (2:161); //DE−
EMPHASIS ( de−p r o p r o c e s s i n g ) :

156 synth_speech(b : b+159) = filter ([1 -0.999],

[1 -1], synth_speech1(b : b+159)); //De
−p r o c e s s i n g

157 end

158 endfunction

159

160 clc;

161 clear all;
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162 xdel(winsid ());

163 inpfilenm = ”SCI/ modules / sound /demos/ s1ofwb . wav”;
164 [x,fs,bits] =wavread(inpfilenm);

165

166 t=length(x)./fs;// t o t a l t ime t s e c o n d s
167 //COMPRESSION STARTS HERE,
168 disp( ’ o r i g i n a l s i g n a l ’ );
169 sound(x, fs);

170 [aCoeff , b_LTopt , Topt , e_prime] = f_ENCODER_relp(x,

fs);

171

172 // e p r ime i s i n s t e a d o f p o s i t i o n ,
p e a k m a g i t u d e i n d e x and
s a m p l e a m p l i t u d e i n d e x . ( t e m p o r a r i l y )

173 // h a l t ( )
174 // h a l t ( ’ P r e s s a key to p lay the o r i g i n a l sound ! ’ )
175

176 [synth_speech] = f_DECODER_relp(aCoeff , b_LTopt ,

Topt , e_prime);

177

178 //RESULTS,
179

180

181 disp( ’ compressed s i g n a l ’ );
182 sound(synth_speech , fs);

183

184 figure;

185 subplot (211),

186 plot(x); title ([ ’ O r i g i n a l s i g n a l = ” ’ , inpfilenm , ’ ”
’ ]);

187 subplot (212), plot(synth_speech); title( ’RELP
compressed output ’ );

188 // Output p l a y s o r i g i n a l s i g n a l and a f t e r
approx imate l y 5 minutes i t p l a y s compressed sound

and p l o t the o r i g i n a l s i g n a l and compressed
s i g n a l .
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