
Scilab Manual for
Mobile Communication
by Prof Hetal Shah

Others
Dharmsinh Desai University1

Solutions provided by
Prof Hetal Shah

Others
Dharmsinh Desai

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Digital Modulation Functions: ASK, FSK, PSK genera-
tion. 4

2 Constellation diagram and Error Rate performance of dif-
ferent modulation techniques with AWGN channel. 7

3 Effect of various channel on transmitted data using different
modulation techniques. 13

4 Trunking Theory for Probability of blocking(Erlang B) and
probability of delay(Erlang C). 23

5 Walsh Code generation 27

6 PN sequence generation. 31

7 Equalization. 35

8 Channel Coding using Linear Block Code 38

9 Transmit and receive diversity 43

10 Speech coding 47

2

List of Experiments

Solution 1.1 1 . 4
Solution 2.1 Sigal space diagram of different modulation 7
Solution 2.2 BER of BPSK and QPSK over AWGN Channel . 9
Solution 3.1 BER BPSK Rayleigh fading channel 13
Solution 3.2 BER QPSK Rayleigh channel 16
Solution 3.3 1 . 20
Solution 4.1 Traffic calculation inErlang B and Erlang C system 23
Solution 5.1 Walsh code generation and spreading and despread-

ing using Walsh code 27
Solution 6.1 3 bit PN sequence generation and spreading and

despreading using PN sequence and shifted PN se-
quence . 31

Solution 7.1 Adaptive equalization using LMS filter 35
Solution 8.1 Linear Block Coding over AWGN channel 38
Solution 9.1 Selection Diversity over AWGN channel 43
Solution 9.2 Maximal Ratio Combining over AWGN and Rayleigh

fading Channel 44
Solution 10.1 speech coding and Decoding using LPC 47

3

Experiment: 1

Digital Modulation Functions:
ASK, FSK, PSK generation.

Scilab code Solution 1.1 1

1 // Amplitude S h i f t Keying , Frequency S h i f t Keying And
Phase S h i f t k ey ing waveform g e n e r a t i o n

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10; // no . o f symbols
6 g=[1 1 0 1 0 0 1 1 1 0]// b i n a r y data
7 f1=1;f2=2; // f r e q u e n c i e s o f c a r r i e r
8 t=0:2* %pi /99:2* %pi;// range o f t ime
9 //ASK

10 cp=[]; bit =[]; mod_ask =[]; mod_fsk =[]; mod_psk =[]; cp1

=[]; cp2 =[];

11 for n=1: length(g);//ASK modulat ion // Ze ro s and
ones a r e i n s e r t e d f o r p rope r p l o t o f message
s i g n a l

12 if g(n)==0;

13 die=zeros (1 ,100);

14 else g(n)==1;

15 die=ones (1 ,100);

4

16 end

17 c_ask=sin(f1*t);

18 cp=[cp die];

19 mod_ask =[mod_ask c_ask];

20 end

21 ask=cp.* mod_ask;//ASK modulated s i g n a l
22

23 //FSK
24 for n=1: length(g);

25 if g(n)==0;

26 die=ones (1 ,100);

27 c_fsk=sin(f1*t);

28 else g(n)==1;

29 die=ones (1 ,100);

30 c_fsk=sin(f2*t);

31 end

32 cp1=[cp1 die];

33 mod_fsk =[mod_fsk c_fsk];

34 end

35 fsk=cp1.* mod_fsk;//FSK molated s i g n a l
36

37 //PSK
38 for n=1: length(g);

39 if g(n)==0;

40 die=ones (1 ,100);

41 c_psk=sin(f1*t);

42 else g(n)==1;

43 die=ones (1 ,100);

44 c_psk=-sin(f1*t);

45 end

46 cp2=[cp2 die];

47 mod_psk =[mod_psk c_psk];

48 end

49 psk=cp2.* mod_psk;//PSK modulated s i g n a l
50 subplot (4,1,1);plot(cp, ’ LineWidth ’ ,1.5);// p l o t

b i na r y s i g n a l
51 xgrid;

52 title(’ B inary S i g n a l ’);// t i t l e

5

53 mtlb_axis ([0 100* length(g) -2.5 2.5]); // a x i s range
54 subplot (4,1,2);plot(ask , ’ LineWidth ’ ,1.5);// p l o t o f

ASK modulated s i g n a l
55 xgrid;

56 title(’ASK modulat ion ’);// t i t l e o f p l o t
57 mtlb_axis ([0 100* length(g) -2.5 2.5]);// a x i s range
58 subplot (4,1,3);plot(fsk , ’ LineWidth ’ ,1.5);// p l o t o f

FSK modulated s i g n a l
59 xgrid;

60 title(’FSK modulat ion ’);// t i t l e o f p l o t
61 mtlb_axis ([0 100* length(g) -2.5 2.5]);// a x i s range
62 subplot (4,1,4);plot(psk , ’ LineWidth ’ ,1.5);// p l o t o f

PSK modulated s i g n a l
63 xgrid;

64 title(’PSK modulat ion ’);// t i t l e o f p l o t
65 mtlb_axis ([0 100* length(g) -2.5 2.5]);// range o f

a x i s
66 // R e s u l t : This expe r iment r e s u l t s p l o t s o f b i n a ry

data , ASK modulat ion , FSK modulat ion and PSK
modulat ion

6

Experiment: 2

Constellation diagram and
Error Rate performance of
different modulation techniques
with AWGN channel.

Scilab code Solution 2.1 Sigal space diagram of different modulation

1 // C o n s t e l l a t i o n diagram o f BPSK and QPSK modulat ion
and BPSK and QPSK modulat ion ove r AWGN channe l

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =20; //No . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);//Random symbol

g e n e r a t i o n from 0 to 1 with un i fo rm d i s t r i b u t i o n
7 snr =10; // S i g n a l to No i s e Rat io
8 qpsk_mod =[];

9 bpsk_mod =2*data1 -1; //BPSK Modulat ion
10 for j=1:2: length(data1)// S e p e r a t i o n o f I & Q

component f o r QPSK modulat ion
11 i_phase =2* data1(j) -1; //BPSK modulat ion o f I phase

component

7

12 q_phase =2* data1(j+1) -1; //BPSK modulat ion o f Q
phase component

13 temp=i_phase+%i*q_phase;// Combinibg I phase and Q
phase component f o r QPSK modulat ion

14 qpsk_mod =[qpsk_mod temp]; //QPSK modulated s i g n a l
15 end

16

17 noise =1/ sqrt (2) *(10^(-(snr /20)))*(rand(1,length(

bpsk_mod), ’ normal ’)+%i*(rand(1,length(bpsk_mod)
, ’ normal ’)));// White g a u s s i a n n o i s e g e n e r a t i o n
f o r bpsk

18 noise1 =1/ sqrt (2) *(10^(-(snr /20)))*(rand(1,length(

qpsk_mod), ’ normal ’)+%i*(rand(1,length(qpsk_mod)
, ’ normal ’)));// White g a u s s i a n n o i s e g e n e r a t i o n
f o r qpsk

19 bpsk_awgn=bpsk_mod+noise;//BPSK Modulated s i g n a l
pa s s ed ove r AWGN channe l

20 qpsk_awgn=qpsk_mod+noise1;//QPSK Modulated s i g n a l
pa s s ed ove r AWGN channe l

21

22 figure // c o n s t e l l a t i o n diagram o f i d e a l BPSK
modulated s i g n a l and BPSK modulated s i g n a l with
White Gauss ian No i s e

23 a = gca();// to hand l e v a r i o u s o b j e c t
24 a.data_bounds = [-1 , -1;1 ,1];

25 a.x_location = ” o r i g i n ”;
26 a.y_location = ” o r i g i n ”;
27 plot2d (real(bpsk_mod),imag(bpsk_mod) ,-2);

28 plot2d (real(bpsk_awgn),imag(bpsk_awgn) ,-5);

29 xlabel(’ In phase ’);//X−a x i s l a b e l
30 ylabel(’ Quadrature phase ’);//Y−a x i s l a b e l
31 title(’ C o n s t e l l a t i o n f o r BPSK with AWGN’);// t i t l e

o f p l o t
32 legend ([’ I d e a l message p o i n t ’ ; ’ message p o i n t with

n o i s e ’]);// l e g e n d
33 mtlb_axis ([-2 2 -2 2]);// range o f a x i s
34 figure // c o n s t e l l a t i o n diagram o f i d e a l QPSK

modulated s i g n a l and QPSK modulated s i g n a l with

8

White Gauss ian No i s e
35 a = gca();// to hand l e v a r i o u s o b j e c t
36 a.data_bounds = [-1 , -1;1 ,1];

37 a.x_location = ” o r i g i n ”;
38 a.y_location = ” o r i g i n ”;
39 plot2d (real(qpsk_mod),imag(qpsk_mod) ,-2);

40 plot2d (real(qpsk_awgn),imag(qpsk_awgn) ,-5);

41 xlabel(’ In phase ’);//X−a x i s l a b e l
42 ylabel(’ Quadrature phase ’);//Y−a x i s l a b e l
43 title(’ C o n s t e l l a t i o n f o r QPSK with AWGN’);// t i t l e

o f p l o t
44 legend ([’ I d e a l message p o i n t ’ ; ’ message p o i n t with

n o i s e ’]);// l e g e n d
45 mtlb_axis ([-2 2 -2 2]);// range o f a x i s
46 // R e s u l t : Gene ra t e s two p l o t s : BPSK modulated s i g n a l

with and wi thout n o i s e −f i g u r e −0
47 //QPSK modulated s i g n a l with

and wi thout n o i s e −f i g u r e −1

Scilab code Solution 2.2 BER of BPSK and QPSK over AWGN Channel

1 // Per formance compar i son o f S imula ted BER and
T h e o r i t i c a l BER o f BPSK and QPSK modulat ion ove r

AWGN channe l
2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 M=4;

7 qpsk_mod =[]; i_phase =[];

8 data1=grand(1,sym ,” u in ” ,0,1);//Random Symbol
g e n e r a t i o n from 0 to 1 with un i fo rm d i s t r i b u t i o n

9 for j=1:2: length(data1)// S e p e r a t i o n o f I & Q
component

10 i_phase =2* data1(j) -1; // BPSK modulat ion o f I

9

phase component
11 q_phase =2* data1(j+1) -1; //BPSK modulat ion o f Q

phase component
12 temp=i_phase+%i*q_phase;// combin ing o f I phase

and Q phase component f o r QPSK modulat ion
13 qpsk_mod =[qpsk_mod temp]; //QPSK modulated s i g n a l
14 end

15 bpsk_mod =2*data1 -1; //BPSK Modulated s i g n a l
16

17 snr =1:10; // S i g n a l to No i s e Rat io
18 for k=1:1: length(snr)

19 H=1/ sqrt (2)*(rand(1,length(qpsk_mod), ’ normal
’)+%i*(rand(1,length(qpsk_mod), ’ normal ’))
);

20 noise1 =1/ sqrt (2) *(10^(-(k/20)))*(rand(1,

length(qpsk_mod), ’ normal ’)+%i*(rand(1,
length(qpsk_mod), ’ normal ’)));// White
Gauss ian No i s e g e n e r a t i o n f o r QPSK

21 noise =1/ sqrt (2) *(10^(-(k/20)))*(rand(1,

length(bpsk_mod), ’ normal ’)+%i*(rand(1,
length(bpsk_mod), ’ normal ’)));// White
Gauss ian No i s e g e n e r a t i o n f o r QPSK

22 rec1_qpsk=qpsk_mod+noise1;//QPSK
modulated s i g n a l ove r AWGN channe l

23 rec1_bpsk= bpsk_mod+noise;//BPSK
modulated s i g n a l ove r AWGN channe l

24

25 rec_data_qpsk =[]; rec_data_bpsk =[];

26 rec1_i=real(rec1_qpsk);// S e p e r a t i o n
o f I phase and Q phase comopnent
o f r e c e i v e d QPSK modulated s i g n a l

27 rec1_q=imag(rec1_qpsk);

28 //
29 for i=1: length(rec1_i)//QPSK Demodulat ion :

BPSK demodulat ion o f I phase and Q phase
components

30 if rec1_i(i) >=0

31 demod_out_i =1;

10

32 else rec1_i(i)<0

33 demod_out_i =0;

34 end

35 if rec1_q(i) >=0

36 demod_out_q =1;

37 else rec1_q(i)<0

38 demod_out_q =0;

39 end

40 rec_data_qpsk =[rec_data_qpsk demod_out_i

demod_out_q]; //QPSK Demodulated s i g n a l
41 end

42 for i=1:1: length(data1)//BPSK Demodulat ion
43 if real(rec1_bpsk(i)) >=0

44 demod_out_bpsk =1;

45 else real(rec1_bpsk(i))<0

46 demod_out_bpsk =0;

47 end

48 rec_data_bpsk =[rec_data_bpsk

demod_out_bpsk]; //BPSK Demodulated
s i g n a l

49 end

50

51 errA =0; errB =0;

52 for i=1: sym

53 if rec_data_qpsk(i)== data1(i)

54 errA=errA;

55 else

56 errA=errA +1;

57 end

58 end

59 BER_qpsk(k)=errA/sym;// BER o f QPSK
60

61 for i=1: sym

62 if rec_data_bpsk(i)== data1(i)

63 errB=errB;

64 else

65 errB=errB +1;

66 end

11

67

68 BER_bpsk(k)=errB/sym;//BER o f BPSK
69 end

70 theoryBer = 0.5* erfc(sqrt (10.^(snr /10))); //
T h e o r i t i c a l BER o f BPSK & QPSK

71 end

72

73 // end
74 snr =1:1:10;

75 plot2d(snr ,BER_bpsk ,5,logflag=” n l ”);// p l o t s i m u l a t e d
BER o f BPSK over AWGN channe l

76 plot2d(snr ,BER_qpsk ,2,logflag=” n l ”);// p l o t s i m u l a t e d
BER o f QPSK over AWGN channe l

77 plot2d(snr ,theoryBer ,3,logflag=” n l ”);// P lo t
t h e o r i t i c a l BER o f QPSK and BPSK over AWGN
channe l

78 mtlb_axis ([0 20 10^-5 0.5]);// a x i s
79 xgrid (10);

80 xtitle(’ B i t Er ro r Rate p l o t f o r BPSK & QPSK
Modulat ion ’ , ’SNR ’ , ’BER ’) ;// t i t l e o f p l o t

81

82

83 legend ([’ BER sim BPSK ’ ; ’ BER sim QPSK ’ ; ’ BER Theory ’])
;// l e g e n d

84 // This e x p e r i m e n t s r e s u l t s p l o t o f b i t e r r o r r a t e (
BER) compar i son o f s i m u l a t e d BPSK over AWGN
channe l , s i m u l a t e d QPSK over AWGN channe l and
t h e o r i t i c a l BER o f BPSK and QPSK

85 // I t w i l l t ake few minutes to g e t p l o t s as 100000
b i t s a r e a p p l i e d as an input to g e t b e t t e r p l o t s

12

Experiment: 3

Effect of various channel on
transmitted data using different
modulation techniques.

Scilab code Solution 3.1 BER BPSK Rayleigh fading channel

1 // Er ro r r a t e pe r f o rmance o f BPSK modulated s i g n a l
ove r on ly AWGN channe l and AWGN and Ray l e i gh
channe l both

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);// Randomly g e n e r a t e d

Symbolsfrom 0 to 1 with un i fo rm d i s t r i b u t i o n
7

8 bpsk_mod =2*data1 -1; //BPSK Modulat ion
9 snr =1:20; // s i g n a l to No i s e Rat io

10 for k=1:1: length(snr)

11

12 H1=1/ sqrt (2)*(rand(1,length(bpsk_mod), ’
normal ’)+%i*(rand(1,length(bpsk_mod), ’
normal ’)));// Ray l e i gh f a d i n g g e n e r a t i o n

13

13

14 noise =1/ sqrt (2) *(10^(-(k/20)))*(rand(1,

length(bpsk_mod), ’ normal ’)+%i*(rand(1,
length(bpsk_mod), ’ normal ’)));// White
Gauss ian No i s e g e n e r a t i o n

15

16 rec1_bpsk=bpsk_mod+noise;//BPSK
modulated s i g n a l ove r AWGN channe l

17 rec1_bpsk_ray1= H1.* bpsk_mod+noise;//
BPSK modulated s i g n a l ove r AWGN
channe l and Ray l e i gh Fading
channe l

18 rec1_bpsk_ray=conj(H1).* rec1_bpsk_ray1

;// m u l t i p l i c a t i o n with c o n j u g a t e o f
r a y l e i g h f a d i n g to n u l l i f y phase

because o f Ray l e i gh Fading
19 // r e c 1 b p s k r a y=r e c 1 b p s k r a y 1 . / (H1 . ∗

c o n j (H1)) ;
20

21 rec_data_bpsk =[]; rec_ray_bpsk =[];

22

23 for i=1:1: length(data1)//BPSK Demodulat ion
o f r e c e i v e d s i g n a l ove r AWGN channe l

24 if real(rec1_bpsk(i)) >=0

25 demod_out_bpsk =1;

26 else real(rec1_bpsk(i))<0

27 demod_out_bpsk =0;

28 end

29 rec_data_bpsk =[rec_data_bpsk

demod_out_bpsk]; // Rece ived s i g n a l
30

31 if real(rec1_bpsk_ray(i)) >=0 //BPSK
Demodulat ion o f r e c e i v e d s i g n a l ove r
AWGN channe l and Ray l e i gh channe l

32 demod_ray_bpsk =1;

33 else real(rec1_bpsk_ray(i)) <0

34 demod_ray_bpsk =0;

35 end

14

36 rec_ray_bpsk =[rec_ray_bpsk

demod_ray_bpsk]; // // Rece ived s i g n a l
37 end

38

39 errB =0; errC =0;

40 for i=1: sym

41

42 if rec_data_bpsk(i)== data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g on ly AWGN Channel

43 errB=errB;

44 else

45 errB=errB +1;

46 end

47

48 BER_bpsk(k)=errB/sym;//BER at r e c e i v e r by
c o n s i d e r i n g on ly AWGN Channel

49

50 if rec_ray_bpsk(i)==data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g AWGN Channel and Ray l e i gh
channe l

51 errC=errC;

52 else

53 errC=errC +1;

54 end

55

56 BER_bpsk_ray(k)=errC/sym;//BER at r e c e i v e r
by c o n s i d e r i n g AWGN Channel and r a y l e i g h
channe l

57 end end

58

59 // end
60 snr =1:1:20;

61 plot2d(snr ,BER_bpsk ,5,logflag=” n l ”);
62 plot2d(snr ,BER_bpsk_ray ,3,logflag=” n l ”);
63 mtlb_axis ([0 20 10^-5 0.5]);

64 xgrid (10);

15

65 xtitle(’ B i t Er ro r Rate p l o t f o r BPSK modulated
s i g n a l ove r AWGN channe l and AWGN and Ray l e i gh
channe l both ’ , ’SNR ’ , ’BER ’) ;

66 legend ([’BER BPSK AWGN ’ ; ’BER BPSK AWGN & Ray l e i gh ’])
;

67 // This expe r iment r e s u l t s p l o t o f e r r o r r a t e
pe r f o rmance o f BPSK modulated s i g n a l ove r AWGN
channe and AWGN and Ray l e i gh channe l both .

68 // This expe r iment w i l l t ake some t ime to d i s p l a y
p l o t as h i g h e r no . o f b i t s e n t e r e d as an input to

g e t b e t t e r p l o t s .

Scilab code Solution 3.2 BER QPSK Rayleigh channel

1 // Er ro r r a t e pe r f o rmance o f QPSK modulated s i g n a l
ove r on ly AWGN channe l and AWGN and Ray l e i gh
channe l both

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 M=4;

7 qpsk_mod =[]; i_phase =[];

8 data1=grand(1,sym ,” u in ” ,0,1);//Random Symbol
g e n e r a t i o n from 0 to 1 with un i fo rm d i s t r i b u t i o n

9 for j=1:2: length(data1)// S e p e r a t i o n o f I & Q
component

10 i_phase =2* data1(j) -1; // BPSK modulat ion o f I
phase component

11 q_phase =2* data1(j+1) -1; //BPSK modulat ion o f Q
phase component

12 temp=i_phase+%i*q_phase;// combin ing o f I phase
and Q phase component f o r QPSK modulat ion

13 qpsk_mod =[qpsk_mod temp]; //QPSK modulated s i g n a l
14 end

16

15

16 snr =1:5:41; // S i g n a l to No i s e Rat io
17 for k=1: length(snr)

18 H=1/ sqrt (2)*(rand(1,length(qpsk_mod), ’ normal
’)+%i*(rand(1,length(qpsk_mod), ’ normal ’))
);// Ray l e i gh f a d i n g g e n e r a t i o n

19

20 noise1 =1/ sqrt (2) *(10^(-(k/20)))*(rand(1,

length(qpsk_mod), ’ normal ’)+%i*(rand(1,
length(qpsk_mod), ’ normal ’)));// White
Gauss ian No i s e g e n e r a t i o n f o r QPSK

21

22 rec1_qpsk=qpsk_mod+noise1;//QPSK
modulated s i g n a l ove r AWGN channe l

23 rec1_qpsk_ray1= H.* qpsk_mod+noise1;

//BPSK modulated s i g n a l ove r AWGN
channe l and Ray l e i gh Fading

channe l
24 rec1_qpsk_ray=conj(H).* rec1_qpsk_ray1

;// m u l t i p l i c a t i o n with c o n j u g a t e
o f r a y l e i g h f a d i n g to n u l l i f y
phase because o f Ray l e i gh Fading

25

26 rec_data_qpsk =[]; rec_data_qpsk_ray

=[];

27

28 rec1_i=real(rec1_qpsk);// S e p e r a t i o n
o f I phase and Q phase comopnent
o f r e c e i v e d QPSK modulated s i g n a l

29 rec1_q=imag(rec1_qpsk);

30

31 rec1_i_ray=real(rec1_qpsk_ray);//
S e p e r a t i o n o f I phase and Q phase

comopnent o f r e c e i v e d QPSK
modulated s i g n a l

32 rec1_q_ray=imag(rec1_qpsk_ray);

33 //
34 for i=1: length(rec1_i)//QPSK Demodulat ion :

17

BPSK demodulat ion o f I phase and Q phase
components

35 if rec1_i(i) >=0

36 demod_out_i =1;

37 else rec1_i(i)<0

38 demod_out_i =0;

39 end

40 if rec1_q(i) >=0

41 demod_out_q =1;

42 else rec1_q(i)<0

43 demod_out_q =0;

44 end

45 if rec1_i_ray(i) >=0

46 demod_out_i_ray =1;

47 else rec1_i(i)<0

48 demod_out_i_ray =0;

49 end

50 if rec1_q_ray(i) >=0

51 demod_out_q_ray =1;

52 else rec1_q_ray(i)<0

53 demod_out_q_ray =0;

54 end

55 rec_data_qpsk =[rec_data_qpsk demod_out_i

demod_out_q]; //QPSK Demodulated s i g n a l
56 rec_data_qpsk_ray =[rec_data_qpsk_ray

demod_out_i_ray demod_out_q_ray]; //
QPSK Demodulated s i g n a l

57 end

58

59 errA =0; errB =0;

60 for i=1: sym

61 if rec_data_qpsk(i)== data1(i)

62 errA=errA;

63 else

64 errA=errA +1;

65 end

66 end

67 BER_qpsk(k)=errA/sym;// BER o f QPSK

18

68

69 for i=1: sym

70 if rec_data_qpsk_ray(i)==data1(i)

71 errB=errB;

72 else

73 errB=errB +1;

74 end

75

76 BER_qpsk_ray(k)=errB/sym;//BER o f BPSK
77 end

78 // theo ryBer = 0 . 5∗ e r f c (s q r t (1 0 . ˆ (sn r /10))) ; //
T h e o r i t i c a l BER o f BPSK & QPSK

79 end

80

81 // end
82 snr =1:5:41;

83 plot2d(snr ,BER_qpsk ,5,logflag=” n l ”);// p l o t s i m u l a t e d
BER o f BPSK over AWGN channe l

84 plot2d(snr ,BER_qpsk_ray ,2,logflag=” n l ”);// p l o t
s i m u l a t e d BER o f QPSK over AWGN channe l

85 // p l o t 2 d (snr , theoryBer , 3 , l o g f l a g =”n l ”) ; / / P lo t
t h e o r i t i c a l BER o f QPSK and BPSK over AWGN
channe l

86 mtlb_axis ([0 40 10^-5 0.5]);// a x i s
87 xgrid (10);

88 xtitle(’ B i t Er ro r Rate p l o t f o r QPSK over AWGN
channe l & AWGN and Ray l e i gh channe l both ’ , ’SNR ’ ,

’BER ’) ;// t i t l e o f p l o t
89

90 legend ([’BER QPSK AWGN ’ ; ’BER QPSK AWGN & Ray l e i gh ’])
;// l e g e n d

91 // This e x p e r i m e n t s r e s u l t s p l o t o f b i t e r r o r r a t e (
BER) compar i son o f s i m u l a t e d QPSK over AWGN
channe l , s i m u l a t e d QPSK over AWGN channe l and
Ray l e i gh f a d i n g channe l .

92 // I t w i l l t ake few minutes to g e t p l o t s as 10000
b i t s a r e a p p l i e d as an input to g e t b e t t e r p l o t s

19

Scilab code Solution 3.3 1

1 // Er ro r r a t e pe r f o rmance o f BPSK modulated s i g n a l
ove r on ly AWGN channe l and AWGN and Ray l e i gh
channe l both

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; //No . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);// Randomly g e n e r a t e d

Symbolsfrom 0 to 1 with un i fo rm d i s t r i b u t i o n
7

8 bpsk_mod =2*data1 -1; //BPSK Modulat ion
9 snr =1:20; // s i g n a l to No i s e Rat io

10 for k=1:1: length(snr)

11

12 H1=1/ sqrt (2)*(rand(1,length(bpsk_mod), ’
normal ’)+%i*(rand(1,length(bpsk_mod), ’
normal ’)));// Ray l e i gh f a d i n g g e n e r a t i o n

13

14 noise =1/ sqrt (2) *(10^(-(k/20)))*(rand(1,

length(bpsk_mod), ’ normal ’)+%i*(rand(1,
length(bpsk_mod), ’ normal ’)));// White
Gauss ian No i s e g e n e r a t i o n

15

16 rec1_bpsk=bpsk_mod+noise;//BPSK
modulated s i g n a l ove r AWGN channe l

17 rec1_bpsk_ray1= H1.* bpsk_mod+noise;//
BPSK modulated s i g n a l ove r AWGN
channe l and Ray l e i gh Fading
channe l

18 rec1_bpsk_ray=conj(H1).* rec1_bpsk_ray1

;// m u l t i p l i c a t i o n with c o n j u g a t e o f
r a y l e i g h f a d i n g to n u l l i f y phase

20

because o f Ray l e i gh Fading
19 // r e c 1 b p s k r a y=r e c 1 b p s k r a y 1 . / (H1 . ∗

c o n j (H1)) ;
20

21 rec_data_bpsk =[]; rec_ray_bpsk =[];

22

23 for i=1:1: length(data1)//BPSK Demodulat ion
o f r e c e i v e d s i g n a l ove r AWGN channe l

24 if real(rec1_bpsk(i)) >=0

25 demod_out_bpsk =1;

26 else real(rec1_bpsk(i))<0

27 demod_out_bpsk =0;

28 end

29 rec_data_bpsk =[rec_data_bpsk

demod_out_bpsk]; // Rece ived s i g n a l
30

31 if real(rec1_bpsk_ray(i)) >=0 //BPSK
Demodulat ion o f r e c e i v e d s i g n a l ove r
AWGN channe l and Ray l e i gh channe l

32 demod_ray_bpsk =1;

33 else real(rec1_bpsk_ray(i)) <0

34 demod_ray_bpsk =0;

35 end

36 rec_ray_bpsk =[rec_ray_bpsk

demod_ray_bpsk]; // // Rece ived s i g n a l
37 end

38

39 errB =0; errC =0;

40 for i=1: sym

41

42 if rec_data_bpsk(i)== data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g on ly AWGN Channel

43 errB=errB;

44 else

45 errB=errB +1;

46 end

47

21

48 BER_bpsk(k)=errB/sym;//BER at r e c e i v e r by
c o n s i d e r i n g on ly AWGN Channel

49

50 if rec_ray_bpsk(i)== data1(i)// Er ro r r a t e
c a l c u l a t i o n o f r e c e i v e d s i g n a l by
c o n s i d e r i n g AWGN Channel and Ray l e i gh
channe l

51 errC=errC;

52 else

53 errC=errC +1;

54 end

55

56 BER_bpsk_ray(k)=errC/sym;//BER at r e c e i v e r
by c o n s i d e r i n g AWGN Channel and r a y l e i g h
channe l

57 end end

58

59 // end
60 snr =1:1:20;

61 plot2d(snr ,BER_bpsk ,5,logflag=” n l ”);
62 plot2d(snr ,BER_bpsk_ray ,3,logflag=” n l ”);
63 mtlb_axis ([0 20 10^-5 0.5]);

64 xgrid (10);

65 xtitle(’ B i t Er ro r Rate p l o t f o r BPSK modulated
s i g n a l ove r AWGN channe l and AWGN and Ray l e i gh
channe l both ’ , ’SNR ’ , ’BER ’) ;

66 legend ([’BER BPSK AWGN ’ ; ’BER BPSK AWGN & Ray l e i gh ’])
;

67 // This expe r iment r e s u l t s p l o t o f e r r o r r a t e
pe r f o rmance o f BPSK modulated s i g n a l ove r AWGN
channe and AWGN and Ray l e i gh channe l both .

68 // This expe r iment w i l l t ake some t ime to d i s p l a y
p l o t as h i g h e r no . o f b i t s e n t e r e d as an input to

g e t b e t t e r p l o t s .

22

Experiment: 4

Trunking Theory for
Probability of blocking(Erlang
B) and probability of delay(
Erlang C).

Scilab code Solution 4.1 Traffic calculation inErlang B and Erlang C sys-
tem

1 //Exp−4 C a l c u l a t e s maximum t r a f f i c i n t e n s i t y and
maximum no . o f u s e r s accomodated i n Er lang B and
Er lang C system f o r g i v e n no o f c h a n n e l s

2 clc;

3 clear;

4 xdel(winsid ());

5

6 function [p1]= erlangB(A1,c1)// c a l c u l a t e b l o c k i n g
p r o b a b i l i t y f o r Er lang B system

7 pr2 =0;

8 pr1=A1^c1/factorial(c1);

9 for k=1:c1

10 pr2=pr2+(A1^k/factorial(k));

11 end

23

12 // A1=A1+1;
13 p1=pr1/pr2;

14 endfunction

15

16 function [p2]= erlangC(A2,c2)// c a l c u l a t e
p r o b a b i l i t y o f b l o cked c a l l d e l ayed i n Er lang C

system
17 temp_1 =0;

18 for k=0:c2 -1

19 temp_1=temp_1+A2^k/factorial(k);

20 end

21 denominator=A^c2+(factorial(c2)*(1-(A2/c))*temp_1);

22 p2=A2^c2/denominator;

23 endfunction

24

25 pr_blocking=input(’ e n t e r p r o b a b i l i t y o f b l o c k i n g ’);
// e n t e r p r o b a b i l i t y o f b l o c k i n g f o r p e r t i c u l a r
system

26 pr_delay=input(’ e n t e r p r o b a b i l i t y o f b l o c k c a l l
d e l a y ’);// e n t e r p r o b a b i l i t y o f b l o cked c a l l
d e l ay ed f o r p a r t i c u l a r system

27 y=input(’ e n t e r c a l l r a t e ’);// Average no . o f c a l l s
per minute

28 H=input(’ e n t e r the ave rage c a l l d u r a t i o n ’); //
Average c a l l d u r a t i o n i n minute

29 c=input(” e n t e r no . o f c h a n n e l s ”);// Enter no . o f
c h a n n e l s

30 disp(”no . o f channe l=”);
31 disp(c);

32 Au=y*H;// T r a f f i c i n t e n s i t y per u s e r
33

34 p=0;

35 for A=1:1:100

36 while(p<pr_blocking)// Find maximum t r a f f i c
i n t e n s i t y f o r e n t e r e d b l o c k i n g
p r o b a b i l i t y p r b l o c k i n g

37 [p]= erlangB(A,c)// c a l l i n g f u n c t i o n e r l angB
38 A=A+1;

24

39 end

40 disp(pr_blocking , ’ f o r b l o c k i n g p r o b a b i l i t y o f ’
);// d i s p l a y b l o c k i n g p r o b a b i l i t y

41 disp(A-1, ’Maximum t r a f f i c i n t e n s i t y i s ’);//
d i s p l a y max . t r a f f i c i n t e n s i t y

42 u=(A-1)/Au;// no . o f u s e r s c a l c u l a t i o n
43 disp(u,”no . o f u s e r s a r e accomodated ”);//

d i s p l a y maximum no . o f u s e r s accomodated i n
Er lang B system

44 break;

45 end //
46 p=0;

47 for A=1:1:100

48 while(p<pr_delay)// Find maximum t r a f f i c
i n t e n s i t y f o r e n t e r e d b l o c k i n g p r o b a b i l i t y
p r b l o c k i n g

49 [p]= erlangC(A,c)// c a l l i n g f u n t i o n to
c a l c u l a t e e r l a n g C p r o b a b i l i t y

50 A=A+1;

51 end

52 disp(pr_delay , ’ f o r b l o c k c a l l d e l a y
p r o b a b i l i t y o f ’);// d i s p l a y b l o c k i n g
p r o b a b i l i t y

53 disp(A-1, ’Maximum t r a f f i c i n t e n s i t y i s ’);//
d i s p l a y max . t r a f f i c i n t e n s i t y

54 u=(A-1)/Au;

55 disp(u,”no . o f u s e r s a r e accomodated ”);//
d i s p l a y maximum no . o f u s e r s accomodated i n
Er lang C system

56 break;

57 end

58 // Enter b l o c k i n g p r o b a b i l i t y p r b l o c k i n g =0.01
59 // Enter p r o b a b o l i t y o f b l o c k c a l l d e l a y p r d e l a y

=0.1
60 // Enter c a l l r a t e= 3/60
61 // e n t e r c a l l d u r a t i o n= 2(i n minute)
62 // Enter no o f c h a n n e l s 50
63

25

64 // Output :
65 // no . o f channe l= 5 0 .
66

67 // f o r b l o c k i n g p r o b a b i l i t y o f 0 . 0 1
68 // Maximum t r a f f i c i n t e n s i t y i s 3 8 .
69 // no . o f u s e r s a r e accomodated 3 8 0 .
70

71 // f o r b l o c k c a l l d e l a y p r o b a b i l i t y o f 0 . 1
72 // Maximum t r a f f i c i n t e n s i t y i s 4 1 .
73 // no . o f u s e r s a r e accomodated 4 1 0 .

26

Experiment: 5

Walsh Code generation

Scilab code Solution 5.1 Walsh code generation and spreading and de-
spreading using Walsh code

1 // Walsh Code g e n e r a t i o n
2 // Spread ing and d e s p r e a d i n g o f i n f o r m a t i o n f o r t h r e e

u s e r s u s i n g Walsh code
3 clc;

4 clear;

5 xdel(winsid ());

6 a=input(’ e n t e r the number o r d e r o f 2 : ’);// input
r e q u i r e d l e n g t h o f Walsh Code which i s a lways
o r d e r o f 2

7 c1=[1 -1 -1]; // i n f o r m a t i o n o f u s e r 1
8 c2=[-1 1 -1]; // i n f o r m a t i o n o f u s e r 2
9 c3=[1 -1 1]; // i n f o r m a t i o n o f u s e r 3

10 W=[0 0;0 1]; // Bas i c Walsh code Matr ix
11 m=2;

12 %n=2^m;

13 for m =2:1:a

14 for i = 1:1:a// g e n r a t i o n o f walsh code matr ix o f
e n t e r e d l e n g t h

15 if i==2^m

16 Winv=bitcmp(W,1);

27

17 W=[W W;W Winv];

18 end

19

20 end

21 end

22 temp =0;

23 W1=[];

24 disp(W)

25 for i=1:1: length(W(1,:))// 0 r e p l a c e d by −1 i n walsh
code matr ix

26 for j=1:1: length(W(1,:))

27 if W(i,j)==0 then

28 W(i,j)=W(i,j) -1;

29 else W(i,j)=W(i,j)+0;

30

31 end

32

33 end

34

35 end

36 // d i s p (W)
37 // s p r e a d i n g u s i n g Walsh code
38 tans_c1 =[c1(1,1).*W(1,:) c1(1,2).*W(1,:) c1(1,3).*W

(1,:)]; // s p r e a d i n g o f u s e r 1 i n f o r m a t i o n u s i n g
f i r s t row o f Walsh Matr ix

39 tans_c2 =[c2(1,1).*W(2,:) c2(1,2).*W(2,:) c2(1,3).*W

(2,:)]; // s p r e a d i n g o f u s e r 2 i n f o r m a t i o n u s i n g
second row o f Walsh Matr ix

40 tans_c3 =[c3(1,1).*W(3,:) c3(1,2).*W(3,:) c3(1,3).*W

(3,:)]; // s p r e a d i n g o f u s e r 3 i n f o r m a t i o n u s i n g
t h i r d row o f Walsh Matr ix

41 aa1=tans_c1 (1,1:a)+tans_c2 (1,1:a)+tans_c3 (1,1:a);

42 aa2=tans_c1 (1,(a+1) :(2*a))+tans_c2 (1,(a+1) :(2*a))+

tans_c3 (1,(a+1) :(2*a));

43 aa3=tans_c1 (1 ,((2*a))+1:(3*a))+tans_c2 (1 ,((2*a))

+1:(3*a))+tans_c3 (1 ,((2*a))+1:(3*a));

44 tans_sig =[aa1 aa2 aa3]; // t r a n s m i s s i o n o f sp r eaded
s i g n a l

28

45 det_code1=input(’ e n t e r d e t e c t i o n code ’);// Enter any
i n t e g e r no . r a n g i n g up to no . o f rows o f walsh
matr ix

46

47 select det_code1 // s e l e c t c a s e to g e t i n f o r m a t i o n
o f e n t e r e d u s e r

48 case 1

49 det_code=W(1,:);

50 case 2

51 det_code=W(2,:);

52 case 3

53 det_code=W(3,:);

54 else

55 det_code=W(4,:);

56 disp(’ i n v a l i d d e t e c t i o n code ’);// d i s p l a y
message f o r i nput o f i n v a l i d d e t e c t i o n
code

57 end

58

59

60 rec_sig =[det_code (1,:).*aa1 det_code (1,:).*aa2

det_code (1,:).*aa3]; // r e c e i v e d s i g n a l m u l t i p l i e d
with d e t e c t i o n code

61 det_sig =[rec_sig (1,1)+rec_sig (1,2)+rec_sig (1,3)+

rec_sig (1,4) rec_sig (1,5)+rec_sig (1,6)+rec_sig

(1,7)+rec_sig (1,8) rec_sig (1,9)+rec_sig (1,10)+

rec_sig (1,11)+rec_sig (1 ,12)]; // d e t e c t i o n o f
i n f o r m a t i o n from r e c e i v e d s i g n a l

62 final_sig =(1/4)*det_sig;

63 disp(’ t r a n s m i t e d i n f o r m a t i o n i s ’);
64 disp(final_sig)// i n f o r m a t i o n transmmited u s i n g

s e l e c t e d v a l i d d e t e c t i o n code
65 // input a=4
66 //W=[0 0 0 0 ; 0 1 0 1 ; 0 0 1 1 ; 0 1 1 0]
67 // d e t e c t i o n code =2 , output=−1 1−1(i n f o r m a t i o n o f

u s e r 2 sp r eaded with second row o f Walsh Matr ix)
68 // d e t e c t i o n code > 3 , r e s u l t s : code not a v a i l a b l e

0 0 0

29

30

Experiment: 6

PN sequence generation.

Scilab code Solution 6.1 3 bit PN sequence generation and spreading and
despreading using PN sequence and shifted PN sequence

1 // Spread ing o f s equence u s i n g PN sequence and
d e s p r e a d i n g o f s equence u s i n g PN sequence and
s h i f t e d PN sequence

2 clc;

3 clear;

4 xdel(winsid ());

5 // Gene ra t i on o f 7 b i t PN sequence
6 // C o e f f i c i e n t o f po l ynomia l
7 a1=1;

8 a2=1;

9 a3=1;

10 // I n i t i a l s t a t e s o f f l i p f l o p
11 R(1)=1;

12 R(2)=0;

13 R(3)=0;

14 m=3;

15 disp(’ output a f t e r eve ry c l o c k p u l s e ’);
16 for i=1:((2^m) -1) // s h i f t o f b i t i n each r e g i s t e r f o r

eve ry c l o c k p u l s e
17 r1=R(1);

31

18 r2=R(2);

19 r3=R(3);

20 PN(i)=R(3);

21 // i f (a1==0)
22 R1=bitxor(r2 ,r3);// input o f r e g i s t e r i s modulo2

a d d i t i o n o f R2 and R3
23 R(3)=R(2);

24 R(2)=R(1);

25 R(1)=R1;

26

27 disp(R);

28 end

29 disp(’PN sequence i s ’);
30 disp(PN);// D i s p l a y 7 b i t PN sequence
31 c1=[1 -1 -1]; // i n f o r m a t i o n o f u s e r 1
32 for j=1:1: length(PN)// 0 r e p l a c e d with −1 i n PN

sequence
33 if PN(j)==0 then

34 PN(j)=PN(j) -1;

35 else PN(j)=PN(j)+0;

36 end

37

38 end

39 disp(PN);

40 spreaded_sig =[c1(1).*PN’ c1(2).*PN ’ c1(3).*PN ’] //
Spread ing o f data o f u s e r 1 u s i n g PN sequence

41 detect_code =[spreaded_sig (1:7).*PN’ spreaded_sig

(8:14) .*PN’ spreaded_sig (15:21) .*PN ’]; // at
r e c e i v e r , r e c i e v e d sp r eaded s i g n a l m u l t i p l i e d
with PN sequnce

42 corr_code =[sum(detect_code (1:7)) sum(detect_code

(8:14)) sum(detect_code (15:21))];

43 rec_sig =(1/7) .* corr_code;// g e t i n f o r m a t i o n form
r e c e i v e d s i g n a l

44 disp(’ r e c e i v e d s i g n a l with c o r r e c t PN sequence i s ’);
45 disp(rec_sig);// r e c e i v e d data o f u s e r 1 at r e c e i v e r

: 1 −1 −1
46 // Despread ing with s h i f t e d PN sequence

32

47 shift_fact=input(’ e n t e r the s h i f t i n g f a c t o r ’);
48 l=1;

49 k=shift_fact -1;

50 for i=1:1: length(PN) // g e n e r a t i o n o f s h i f t e d PN
sequence as per e n t e r e d s h i f t i n g f a c t o r

51 if i<= shift_fact

52 shift_seq(i)=PN(length(PN)-k);

53 k=k-1;

54 else i>shift_fact

55 shift_seq(i)=PN(l);

56 l=l+1;

57 end

58 end

59 disp(’ s h i f t e d s equence i s ’);
60 disp(shift_seq ’);// d i s p l a y s h i f t e d s equence
61 // d e s p r e a d i n g u s i n g s h i f t e d PN sequence
62 detect_shift_code =[spreaded_sig (1:7).*shift_seq ’

spreaded_sig (8:14) .*shift_seq ’ spreaded_sig

(15:21) .*shift_seq ’];

63 corr_shift_code =[sum(detect_shift_code (1:7)) sum(

detect_shift_code (8:14)) sum(detect_shift_code

(15:21))];

64 rec_shift_sig =(1/7) .* corr_shift_code;

65 disp(” r e c i e v e d s i g n a l with s h i f t e d PN sequence i s
”);

66 disp(rec_shift_sig);// I n v a l i d data r e c e i v e d
beacus e s i g n a l was de sp reded with s h i f t e d PN
sequence

67 disp(’ which i s not v a l i d t r a n s m i t t e d s i g n a l ’);
68 // R e s u l t :
69 // output o f PN sequence g e n e r a t o r a f t e r each

c l o c k p u l s e
70 // PN =0 0 1 0 1 1 1 r e p l a c e 0 with −1,PN=−1 −1 1

−1 1 1 1
71 // e n t e r e d s h i f t i n g f a c t o r =3 , s h i f t e d PN sequence=

1 1 1 −1 −1 1 −1
72 // I n v a l i d s i g n a l i s r e c e i v e d when d e s p r e a d i n g i s

with s h i f t e d v e r s i o n o f PN

33

73 // r e c s h i f t s i g =− 0 . 1 4 28 5 7 1 0 . 14 2 8 5 7 1
0 . 1 42 8 5 7 1

34

Experiment: 7

Equalization.

Scilab code Solution 7.1 Adaptive equalization using LMS filter

1 // Leas t Mean Square a d a p t i v e e q u a l i z e r
2 clc;

3 clear all;

4 xdel(winsid ());

5 numPoints = 500;

6 numTaps = 1; // channe l o r d e r
7 Mu = 0.01; // i t e r a t i o n s t e p s i z e
8

9 // input i s g u a s s i a n
10 x = rand(numPoints ,1, ’ normal ’) + %i*rand(numPoints

,1, ’ normal ’);
11 // choo s e channe l to be random uni fo rm
12 h = rand(numTaps ,1) + %i*rand(numTaps , 1);

13

14 h = h/max(abs(h)); // n o r m a l i z e channe l
15 // c o n v o l v e channe l with the input
16 d = filter(h, 1, x);

17

18 // i n i t i a l i z e v a r i a b l e s
19 w = [];

20 y = [];

35

21 in = [];

22 e = []; // e r r o r , f i n a l r e s u l t to be computed
23

24 w = zeros(numTaps +1,1) + %i*zeros(numTaps +1,1);

25 kk=1;

26 aa(kk ,:)=w’;

27 //LMS Adaptat ion
28 for n = numTaps +1 : numPoints

29

30 // s e l e c t pa r t o f t r a i n i n g input
31 in = x(n : -1 : n-numTaps) ;

32 y(n) =w’* in;

33

34 // compute e r r o r
35 e(n) = d(n)-y(n);

36

37 // update tap s
38

39 w = w+ Mu*(real(e(n)*conj(in)) - %i*imag(e(n)*conj(

in)));

40

41 kk=kk+1;

42 aa(kk ,:)=w’;

43 end

44

45 // P lo t r e s u l t s
46 figure;

47 iter =1:500

48 plot2d(iter ,abs(e),5,logflag=”nn”);
49 title([’LMS Adaptat ion Lea rn ing Curve Using Mu =

0 . 0 1 ’]);
50 xlabel(’ I t e r a t i o n Number ’);
51 ylabel(’ Output Es t imat i on Er ro r i n dB ’);
52 figure;

53 plot3d(abs(aa(:,1)),abs(aa(:,2)),abs(e));

54 title(’LMS adapt i on curve with we ight f a c t o r s ’);
55 xlabel(’ a d a p t i v e we ight f a c t o r 1 ’);
56 ylabel(’ a d a p t i v e we ight f a c t o r 2 ’);

36

57 zlabel(’ mean squa r e e r r o r ’);
58 // Output shows p l o t o f MSE with no . o f i t e r a t i o n s

i n f i g u r e 1 and 3D p l o t o f MSE with we ight
f a c t o r s

37

Experiment: 8

Channel Coding using Linear
Block Code

Scilab code Solution 8.1 Linear Block Coding over AWGN channel

1

2

3 // t h i s i s a l i n e a r b l o c k cod ing and decod ing ove r
awgn channe l

4 // 4 b i t s i nput s i g n a l i s coded with l i n e a r b l o c k
code (4 , 7) , 7 b i t coded s i g n a l i s t r a n s m i t t e d
ove r awgn channe l and at r e c e i v e r s i d e s i g n a l i s
decoded . I f t h e r e i s e r r o r i n one b i t , l i // near
b l o c k code c o r r e c t tha t e r r o r and o r i g i n a l
t r a n s m i t t e r code i s r e c e v e d .

5 // I f e r r o r i s i n more than one b i t , code i s not
c o r r e c t e d so wrong code i s r e c i e v e d

6 clc;

7 clear all;

8 xdel(winsid ());

9 global P n k;

10

11 n=7; // l e n g t h o f coded input
12 k=4; // l e n g t h o f i nput

38

13 P=[1 1 0; 0 1 1; 1 0 1;1 1 1]; // p a r i t y matr ix o f
s i z e k ∗ (n−k) to be

14 // s e l e c t e d so tha t
the s y s t e m a t i c g e n e r a t o r

15 // matr ix i s l i n e a r l y
independent or f u l l rank

16 // matr ix
17

18 // (n , k) l i n e a r b l o c k code where k − no . o f i nput
data b i t s and n−no . o f o/p

19 // data b i t s . code r a t e=k/n
20 // x i s an input v e c t o r c o n t a i n i n g k b i t s
21

22 // This i s an l i n e a r b l o c k encod ing f u n c t i o n
23 function y1=linblkcode(x);

24 global P n k;

25 n=7;

26 k=4;

27 P=[1 1 0; 0 1 1; 1 0 1;1 1 1]; // p a r i t y matr ix
28 //x=[0 1 1 0] ;
29

30 //G=[] ; // % Generator matr ix k∗n
31 G=[eye(k,k) P];

32

33 y1=zeros(1,n);

34 for i=1:k// l i n e a r b l o c k cod ing
35 var(i,:)=x(1,i) & G(i,:);

36 var(i,:)=bool2s(var(i,:));

37 y1(1,:)=bitxor(var(i,:),y1(1,:));// coded s i g n a l
38 end

39

40 endfunction

41

42

43 // %This i s a l i n e a r b l o c k syndrome decod ing f u n c t i o n
f i l e %

44

45 function x1=linblkdecoder(y)

39

46 //% he r e y i s r e c i e v e d v e c t o r 7 b i t s l ong
47

48 //% (7 , 4) l i n e a r b l o c k code
49 global P n k;

50

51

52 //H=[] ; //% PARITY CHECK MATRIX
53

54 H=[P’ eye((n-k) ,(n-k))];

55 Ht=H’; // %transpose o f H
56

57 S=zeros(1,n-k); // %syndrome o f r e c i e v e d v e c t o r x
58 for i=1:n-k// decod ing o f l i n e a r b l o c k code
59 S(i)=y(1) & Ht(1,i);

60 S(i)=bool2s(S(i));

61 for j=2:n

62

63 S(i)=bitxor(S(i), bool2s ((y(j) & Ht(j,i))));

// decoded s i g n a l
64 end

65 end

66

67

68

69 //%%∗∗∗∗SYNDROME LOOK UP TABLE∗∗∗∗∗∗∗∗∗∗∗∗
70

71 //%%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
72 //%
73 if S==[0 0 0]

74 e=[0 0 0 0 0 0 0];

75 z=bitxor(y,e);

76 end

77

78 if S==[0 0 1]

79 e=[0 0 0 0 0 0 1];

80 z=bitxor(y,e);

81 end

82 if S==[0 1 0]

40

83 e=[0 0 0 0 0 1 0];

84 z=bitxor(y,e);

85 end

86 if S==[1 0 0]

87 e=[0 0 0 0 1 0 0];

88 z=bitxor(y,e);

89 end

90 if S==[1 1 1]

91 e=[0 0 0 1 0 0 0];

92 z=bitxor(y,e);

93 end

94 if S==[1 0 1]

95 e=[0 0 1 0 0 0 0];

96 z=bitxor(y,e);

97 end

98 if S==[0 1 1]

99 e=[0 1 0 0 0 0 0];

100 z=bitxor(y,e);

101 end

102 if S==[1 1 0]

103 e=[1 0 0 0 0 0 0];

104 z=bitxor(y,e);

105 end

106 // d i s p (’ e r r o r ’) ;
107 // d i s p (e) ;
108 x1=z(1,1:k);

109 endfunction

110 snr_dB =2;

111

112 x=[1 0 0 1]; // input b i t s to the
encode r o f s i z e 1∗ k

113 y1=linblkcode(x);// // y1 i s the output
o f l i n e a r b l o c k encode r

114 n1 = 1/sqrt (2)*[rand(1,length(y1), ’ normal ’) + %i*

rand(1,length(y1), ’ normal ’)]; // whi te g a u s s i a n
n o i s e g e n e r a t i o n

115 r=y1+ 10^(- snr_dB /20)*n1;// r e c e i v e d s i g n a l ove r awgn
channe l

41

116 // r1=r e a l (r)
117 rec=real(r) >=0.5; // d e t e c t i o n o f b i t 1 and 0 i n

r e c e i v e d s i g n a l
118 rec_fin=bool2s(rec);// c o n v e r t boo l ean matr ix to z e r o

one matr ix
119 // r e c e r r=r e c f i n==y1 ;
120 // n o e r r=b o o l 2 s (r e c e r r) ;
121 disp(’ The i n f o r m a t i o n s i g n a l= ’)// d i s p l a y input
122 disp(x)

123 disp(’ The t r a n s m i t t e d encoded s i g n a l= ’)// d i s p l a y
coded s i g n a l

124 disp(y1)

125 disp(’ The r e c i e v e d s i g n a l= ’)// d i s p l a y r e c e i v e d
s i g n a l

126 disp(rec_fin);

127 x1=linblkdecoder(rec_fin); // % x1 i s the
output o f the l i n e a r b l o c k decode r

128 disp(’ The decoded s i g n a l= ’)// d i s p l a y decoded s i g n a l
129 disp(x1);

130 if x1==x then disp(’ one or l e s s than one e r r o r so
c o r r e c t code i s r e c e i v e d ’);

131 else

132 disp(’ more than one e r r o r so wrong code d e t e c t e d
’);

133 end

134 // Output : The i n f o r m a t i o n s i g n a l i s : 1001
135 // t r a n s m i t t e d code i s : 1001001
136 // 1 . r e c e i v e d s i g n a l i s : 1 0 1 1 0 0 1 (e . g) (e r r o r i n on ly

one b i t)
137 // decoded s i g n a l : 1001
138 // one or l e s s than one e r r o r so c o r r e c t code i s

r e c e i v e d
139 // 2 . r e c e i v e d s i g n a l i s : 1 0 1 1 0 1 1 (e . g) (e r r o r i n more

than one b i t s)
140 // decoded s i g n a l : 1 0 1 0
141 // more than one e r r o r so wrong code i s r e c e i v e d

42

Experiment: 9

Transmit and receive diversity

Scilab code Solution 9.1 Selection Diversity over AWGN channel

1 // ber pe r f o rmance with 1 , 2 and 3 r e c e i v e r antennas
ove r awgn channe l u s i n g s e l e c t i o n d i v e r s i t y

2 clc;

3 clear;

4 xdel(winsid ());

5 sym =10000; // no . o f symbols
6 data1=grand(1,sym ,” u in ” ,0,1);// randomly g e n e r a t e d

input
7 s = 2*data1 -1; // BPSK modulat ion 0 −> −1; 1 −> 1
8 nRx = [1 2 3]; // no . o f r e c e i v i n g antennas
9 snr_dB = [1:10]; // s i g n a l to n o i s e r a t i o

10 for j = 1: length(nRx)

11 for i = 1: length(snr_dB)

12 n = 1/sqrt (2)*[rand(nRx(j),sym , ’ normal ’) +

%i*rand(nRx(j),sym , ’ normal ’)]; // whi te
g a u s s i a n n o i s e

13

14 y = ones(nRx(j) ,1)*s + 10^(- snr_dB(i)/20)*n;

// r e c e i v e d s i g n a l ove r awgn channe l
15 [yHat1 ind] = mtlb_max(y,[],1);// f i n d

s t r o n g e s t r e c e i v e d s i g n a l from a l l

43

antennas
16

17 ipHat1 = real(yHat1) >0;

18 ipHat = bool2s(ipHat1);// boo l ean to z e r o one
matr ix c o n v e r s i o n

19 // e f f e c t i v e SNR
20 nErr(j,i) = size(find([data1 - ipHat]) ,2);//

no . o f e r r o r c a l c u l a t i o n
21 end

22 end

23 simBer = nErr/sym; //BER c a l c u l a t i o n
24 // p l o t o f ber compar i son p l o t f o r 1 ,2 and 3

r e c e i v i n g antennas
25 snr_dB =1:10

26 plot2d(snr_dB ,simBer (1,:) ,5,logflag=” n l ”);
27 plot2d(snr_dB ,simBer (2,:) ,2,logflag=” n l ”);
28 plot2d(snr_dB ,simBer (3,:) ,12,logflag=” n l ”);
29 xgrid

30 legend([’ 1X1 ’ ; ’ 1X2 ’ ; ’ 1 x3 ’]);
31 xlabel(’ Number o f r e c e i v e antenna ’);
32 ylabel(’ e f f e c t i v e SNR, dB ’);
33 title(’SNR improvement with S e l e c t i o n Combining ’);
34 // output p r e s e n t s BER per fo rmance compar i son p l o t s

with 1 ,2 and 3 r e c e i v i n g antennas ove r awgn
c h a n n e l s

Scilab code Solution 9.2 Maximal Ratio Combining over AWGN and Rayleigh
fading Channel

1 // BER Per formance coampar i son with one r e c e i v i v n g
atenna and two r e c e i v i n g antennas with Maximal
r a t i o Combining d i v e r s i t y t e c h n i q u e ove r awgn
channe and r a y l e i g h f a d i n g channe l

2 clc;

3 clear;

44

4 xdel(winsid ());

5 sym =100000; // no . o f symbols
6 M=2;

7 data1=grand(1,sym ,” u in ” ,0,1);// input s i g n a l i s
randomly g e n e r a t e d

8 //N = 1 0 ; % number o f b i t s or symbols
9 // i p = rand (1 ,N) >0 .5 ; % g e n e r a t i n g 0 ,1 with e q u a l

p r o b a b i l i t y
10 s = 2*data1 -1; // BPSK modulat ion 0 −> −1; 1 −> 1
11 nRx = [1 2]; // no o f r e c e i v e r s
12 snr_dB = [1:20]; // s i g n a l to n o i s e r a t i o n i n dB
13 for jj = 1: length(nRx)

14 for ii = 1: length(snr_dB)

15 n = 1/sqrt (2)*[rand(nRx(jj),sym , ’ normal ’) +

%i*rand(nRx(jj),sym , ’ normal ’)]; // whi te
g a u s s i a n n o i s e ,

16 h = 1/sqrt (2)*[rand(nRx(jj),sym , ’ normal ’) +

%i*rand(nRx(jj),sym , ’ normal ’)]; //
Ray l e i gh f a d i n g channe l

17 // Channel and n o i s e No i s e a d d i t i o n
18 sD = kron(ones(nRx(jj) ,1),s);

19 y = h.*sD + 10^(- snr_dB(ii)/20)*n;//
r e c e i v e d s i g n a l ove r awgn channe l and
a y l e i g h f a d i n g channe l

20 // f i n d i n g the power o f the channe l on a l l
rx cha in

21 yHat = sum(conj(h).*y,1)./sum(h.*conj(h)

,1); // maximal r a t i o combin ing
22 // hPower1 = h . ∗ c o n j (h) ;
23

24 ipHat = real(yHat) >0;

25 // e f f e c t i v e SNR
26 nErr(jj,ii) = size(find([data1 -

ipHat]) ,2);// c a l c u l a t e e r r o r
27 end

28 end

29 simBer = nErr/sym; // b i t e r r o r r a t e c a l c u l a t i o n
30 // p l o t

45

31 snr_dB =1:20

32 plot2d(snr_dB ,simBer (1,:) ,5,logflag=” n l ”);// snr− ber
p l o t with one r e c e i v i n g antenna

33 plot2d(snr_dB ,simBer (2,:) ,2,logflag=” n l ”);// snr− ber
p l o t with two r e c e i v i n g antennas

34 // p l o t (nRx , 1 0∗ l o g 1 0 (EbN0EffSim) , ’ bp− ’ , ’ LineWidth ’ , 2)
;

35 // m t l b a x i s ([1 20 0 6])
36 xgrid

37 legend ([’ 1X1 ’ ; ’ 1X2 ’]);
38 xlabel(’ Number o f r e c e i v e antenna ’);
39 ylabel(’ e f f e c t i v e SNR, dB ’);
40 title(’SNR improvement with Maximal r a t i o Combining ’

);

46

Experiment: 10

Speech coding

Scilab code Solution 10.1 speech coding and Decoding using LPC

1 //Exp−10 Speech cod ing u s i n g Long Term P r e d i c t i v e
code r

2 // This code read wav f i l e and p lay o r i g i n a l s i g n a l
and compressed s i g n a l

3 // I t a l s o p l o t s o r i g i n a l s i g n a l as w e l l as
compressed s i g n a l

4

5 function [aCoeff , tcount_of_aCoeff , e] =

func_lev_durb(y, M);

6 //M=o r d e r and y i s a r r a y o f the data p o i n t o f the
c u r r e n t frame

7 sk=0; // i n i t i a l i z i n g summartion term ” sk ”
8 a=[zeros(M+1);zeros(M+1)]; // d e f i n i n g a matr ix o f

z e r o s f o r ”a” f o r i n i t .
9 //MAIN BODY OF THIS PROGRAM STARTS FROM HERE

>>>>>>>>>>>>>>
10 z=xcorr(y);

11

12 // f i n d i n g a r r a y o f R[l]
13 R=z(((length(z)+1) ./2) : length(z)); //R=a r r a y

o f ”R[l] ” , where l = 0 , 1 , . . . (b+N)−1 %R(1)=R[l a g

47

=0] , R(2)=R[l a g =1] , %R(3)=R[l a g = 2] . . . e t c
14

15 //GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER
” 0 ” :

16 s=1; // s=s t e p no .
17 J(1)=R(1); // J=a r r a y o f ” J l ” , where l

= 0 , 1 , 2 . . . (b+N) −1, J (1)=J0 , J (2)=J1 , J (3)=J2 e t c
18

19 //GETTING OTHER PARAMETERS OF PREDICTOR OF ORDER ”(s
−1)”

20 for s=2:M+1,

21 sk=0; // c l e a r i n g ” sk ” f o r each
i t e r a t i o n

22 for i=2:(s-1),

23 sk=sk + a(i,(s-1)).*R(s-i+1);

24 end //now we know v a l u e o f ” sk ” ,
the summation term

25 // o f f o rmu la o f c a l c u l a t i n g
”k (l) ”

26 k(s)=(R(s) + sk)./J(s-1);

27 J(s)=J(s-1) .*(1 -(k(s)).^2);

28

29 a(s,s)= -k(s);

30 a(1,s)=1;

31 for i=2:(s-1),

32 a(i,s)=a(i,(s-1)) - k(s).*a((s-i+1) ,(s-1));

33 end

34 end

35 // inc r ement ”b” and do same f o r next frame u n t i l end
o f f rame when

36 // combin ing t h i s code with o t h e r p a r t s o f LPC a l g o
37

38 //PREDICTION ERROR; FOR TESTING THE ABOVE PREDICTOR
39 aCoeff=a((1:s),s)’; // a r r a y o f ”a (i , s) ” , where

, s=M+1
40 tcount_of_aCoeff = length(aCoeff);

41

42 y_padded_for_delay_r = [y’; zeros (1,1)]; // i t i s

48

padded with z e r o s to remove the e f f e c t o f d e l a y
i n f i l t e r

43 est_y_with_dummy_pad = filter ([0 -aCoeff (2:9)],1,

y_padded_for_delay_r); // = s ˆ(n) with a cap
on page 92 o f the book

44 est_y = est_y_with_dummy_pad (2:321);

45 e = y’ - est_y; // supposed to be a whi te n o i s e
46 endfunction

47

48 function [aCoeff , b_LTopt , Topt , e_prime] =

f_ENCODER_relp(x, fs)

49 M = 8; // p r e d i c t i o n o r d e r f o r LP a n a l y s i s
50 //INITIALIZATION ;
51 b=1; // index no . o f s t a r t i n g data p o i n t o f

c u r r e n t frame
52 fsize = 20e-3; // frame s i z e (i n m i l i s e c)
53 frame_length = round(fs .* fsize); //=number data

p o i n t s i n each f r a m e s i z e o f ”x”
54 N= frame_length - 1; //N+1 = frame l e n g t h = number

o f data p o i n t s i n each f r a m e s i z e
55

56 y_proc = filter ([1 -1], [1 -0.999], x); // pre−
p r o c e s s i n g

57 //FRAME SEGMENTATION
58 for b=1 : frame_length : (length(x) - N)

59

60 y_f = y_proc(b:b+N); // ”b+N” d e n o t e s the end
p o i n t o f c u r r e n t frame . ”y” d e n o t e s an a r r a y o f
the data p o i n t s o f the c u r r e n t f rame

61 //LP ANALYSIS [l ev−durb] & PREDICTION ERROR (shor t−
term) FILTER ;

62 [a, tcount_of_aCoeff , e_s] = func_lev_durb (y_f ,

M); // e=e r r o r s i g n a l from lev−durb proc
63 aCoeff(b: (b + tcount_of_aCoeff - 1)) = a; //

a C o e f f i s a r r a y o f ”a” f o r whole ”x”
64 //LONG−TERM LP ANALYSIS , FILTERING , AND CODING

a n a l y s i s :
65 T_min = round (fs .* 5e-3); //=t o t a l data

49

p o i n t s i n 5ms o f ”x”
66 T_max = round (fs .* 15e-3);

67 c1 = 1;

68 for bs = b : 40 : b+length(y_f) -40 // sub f raming
bs = 1 2 8 1 ;

69 if bs < T_max

70 break;

71 end

72

73 Jmin(bs) = 10^9;

74

75 for T = T_min : T_max // w i t h i n 1 (
c u r r e n t) f rame T = 4 0 ;

76 for c = 1:40 // data p o i n t s o f
c u r r e n t subframe c =1; temporary

77 sm1(c) = (y_proc(bs+(c-1)) .*

y_proc(bs-T+(c-1))); // e s (n)
78 sm2(c) = y_proc(bs -T+(c-1)); //=

e s (n−T)
79 sm22(c) = sm2(c).^2;

80 end

81 q1 = sum(sm1);

82 q2 = sum(sm22);

83 b_LT(T) = -(q1./q2);

84 // J l oop :
85 for c = 1:40 // data p o i n t s o f

c u r r e n t subframe c =1; temporary
86 smJ1(c) = y_proc(bs+(c-1));

87 smJ2(c) = b_LT(T) .* y_proc(bs -T

+(c-1));

88 end

89 smJ = smJ1 + smJ2;

90 qJ = smJ .^2;

91 J(T) = sum(qJ);

92

93 if J(T) < Jmin(bs),

94 Jmin(bs) = J(T);

95 Topt(bs) = T;

50

96 if b_LT(T) >=1,

97 b_LTopt(bs) = 0.9999; //
t r a n c a t i o n

98 else

99 b_LTopt(bs) = b_LT(T);

100 end

101 else

102 end

103 end //T loop ends
104 // p r e d i c t o r :
105 LT_gain = [zeros(1, Topt(bs) -1), b_LTopt(bs)

]; // as i t s a y s zˆ−T i n page 121
106 e_s_padded_for_delay_r = [e_s(c1:c1+39);

zeros(Topt(bs), 1)]; // i t i s padded with
z e r o s to remove the e f f e c t o f d e l a y i n

f i l t e r . %Topt (bs) no . o f ’ z ’ s and one
’ 1 ’ r e s u l t s i n t o t a l ’ Topt (bs) ’ amount
o f d e l a y

107 e_with_dummy_pad = filter ([1 LT_gain], 1,

e_s_padded_for_delay_r); // = 1 + 0∗ z
ˆ−1 + 0∗ zˆ−2 + . . . + b∗ zˆ−T

108 e_LT(bs:bs+39 ,1) = e_with_dummy_pad(Topt(bs

)+1 : Topt(bs)+1+39); //LT p r e d i c t e d ”
e ”

109 e(bs:bs+39, 1) = e_s(c1 : c1+39) - e_LT(bs :

bs+39);

110

111 //WEIGHTING FILTER :
112 w = [-0.0004;

-0.0156; -0.0677;0.0545;0.6069;1.0000;0.6069;0.0545; -0.0677; -0.0156; -0.0004];

// 11 p o i n t f l a t t o p window i s
t e m p o r a r i l y chosen

113 wndd = conv(w, e(bs:bs+39)); // output s
t o t a l 50 sample s

114 x_n(bs:bs+39) = wndd (6:45); // middle 40
sample s a r e taken

115

116 //POSITION SELECTION & EXCITATION GENERATOR:

51

117 for i1 = 0:3

118 for i = i1+bs : 3 : bs+i1+38;

119 x_m(i1+1,i) = x_n(i);

120 end

121

122 E_m(i1+1,1) = sum((x_m(i1+1, bs:3)).^2);

123 end

124 [E_m_max , index_max] = gsort(E_m);

125 e_prime(bs : bs+39) = x_m(index_max (4), bs:

bs+39);

126 c1 = c1 + 40;

127 end

128 end

129 endfunction

130

131 //RELP DECODER p o r t i o n :
132 function [synth_speech , synth_speech1 , LT_gain ,

e_prime_pad_for_d_r , e_prime_op_dummy_pad ,

e_prime_op , e_prime_op_pad_delay_r ,

synth_speech_dummy_pad] = f_DECODER_relp(aCoeff ,

b_LTopt , Topt , e_prime)

133 // re−c a l c u l a t i n g f r a m e l e n g t h f o r t h i s decode r
134 frame_length =9; // i n i t i a l v a l u e f o r c a l c u l a t i o n
135 for i=10: length(aCoeff)

136 if aCoeff(i) == 0

137 frame_length = frame_length + 1;

138 else break;

139 end

140 end

141 e_prime = e_prime ’; // making i t a column matr ix
f o r c o n v e n i e n c e

142

143 for b=1 : frame_length : length(aCoeff) // l e n g t h (
a C o e f f) shou ld be very c l o s e (i . e l e s s than a
f r a m e l e n g t h e r r o r) to l e n g t h (x)

144 for bs = b : 40 : b+frame_length -40 //
sub f raming

145

52

146 //EXCITATION GENERATOR: not done ye t .
because e p r ime has been s e n t to t h i s
de code r d i r e c t l y . w i thout q u a n t i z a t i o n .

147 //PITCH SYNTHESIS FILTER : %has to be done
per subframe

148 LT_gain = [zeros(1, Topt(bs) -1), b_LTopt(bs)

]; // as i t s a y s zˆ−T
149 e_prime_pad_for_d_r = [e_prime(bs:bs+39);

zeros(Topt(bs), 1)]; // i t i s padded with
z e r o s to remove the e f f e c t o f d e l a y i n

f i l t e r . %Topt (bs) no . o f ’ z ’ s and one
’ 1 ’ r e s u l t s i n t o t a l ’ Topt (bs) ’ amount
o f d e l a y

150 e_prime_op_dummy_pad = filter(1, [1 LT_gain

], e_prime_pad_for_d_r); //= 1 / (1 +
0∗ zˆ−1 + 0∗ zˆ−2 + . . . + b∗ zˆ−T)

151 e_prime_op(bs:bs+39 ,1) =

e_prime_op_dummy_pad(Topt(bs)+1 : Topt(bs

)+1+39); // p i t ch−s y n t h e s i s f i l t e r
output

152 end //FORMANT SYNTHESIS FILTER :
153 e_prime_op_pad_delay_r= [e_prime_op(b : b

+159); zeros (1,1)]; // i t i s padded with
z e r o s to remove the e f f e c t o f d e l a y i n
f i l t e r

154 synth_speech_dummy_pad = filter(1, [1 aCoeff

(b+1 : b+8)], e_prime_op_pad_delay_r);

155 synth_speech1(b : b+159) =

synth_speech_dummy_pad (2:161); //DE−
EMPHASIS (de−p r o p r o c e s s i n g) :

156 synth_speech(b : b+159) = filter ([1 -0.999],

[1 -1], synth_speech1(b : b+159)); //De
−p r o c e s s i n g

157 end

158 endfunction

159

160 clc;

161 clear all;

53

162 xdel(winsid ());

163 inpfilenm = ”SCI/ modules / sound /demos/ s1ofwb . wav”;
164 [x,fs,bits] =wavread(inpfilenm);

165

166 t=length(x)./fs;// t o t a l t ime t s e c o n d s
167 //COMPRESSION STARTS HERE,
168 disp(’ o r i g i n a l s i g n a l ’);
169 sound(x, fs);

170 [aCoeff , b_LTopt , Topt , e_prime] = f_ENCODER_relp(x,

fs);

171

172 // e p r ime i s i n s t e a d o f p o s i t i o n ,
p e a k m a g i t u d e i n d e x and
s a m p l e a m p l i t u d e i n d e x . (t e m p o r a r i l y)

173 // h a l t ()
174 // h a l t (’ P r e s s a key to p lay the o r i g i n a l sound ! ’)
175

176 [synth_speech] = f_DECODER_relp(aCoeff , b_LTopt ,

Topt , e_prime);

177

178 //RESULTS,
179

180

181 disp(’ compressed s i g n a l ’);
182 sound(synth_speech , fs);

183

184 figure;

185 subplot (211),

186 plot(x); title ([’ O r i g i n a l s i g n a l = ” ’ , inpfilenm , ’ ”
’]);

187 subplot (212), plot(synth_speech); title(’RELP
compressed output ’);

188 // Output p l a y s o r i g i n a l s i g n a l and a f t e r
approx imate l y 5 minutes i t p l a y s compressed sound

and p l o t the o r i g i n a l s i g n a l and compressed
s i g n a l .

54

	
	Digital Modulation Functions: ASK, FSK, PSK generation.
	Constellation diagram and Error Rate performance of different modulation techniques with AWGN channel.
	Effect of various channel on transmitted data using different modulation techniques.
	Trunking Theory for Probability of blocking(Erlang B) and probability of delay(Erlang C).
	Walsh Code generation
	PN sequence generation.
	Equalization.
	Channel Coding using Linear Block Code
	Transmit and receive diversity
	Speech coding

