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Experiment: 1

Obtain state model of the
second order system cascaded
with active lead circuit and
show its step response.

Scilab code Solution 1.01 Lab 01

//

// Lab. 01: Obtain state model of the second order
system cascaded with active
// lead circuit. Show its step response.

//

//scilab —5.5.0

//Operating System : OS X 10.9.3
//Clean the environment

clc;
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clear all;
clf;

// Compensator model

R1=1000; R2=5e3;Cl=1e-6;C2=1e-5;
kc=5;

s=poly (0, ’s’);

g=kc*(R1*Cl*xs+1) /(R2*C2*xs+1) ;

// System transfer function
g1=0.2/(s"2+1.7*s+1) ;

// Overall transfer function
sys=tf2ss (g*xgl);

// Unit step response

t=linspace (0,10,1000);
y=csim( ’step’,t,sys);

plot(t,y);

title(’Unit step response of the electrical system’

"fontsize ' ,4)
xlabel ("Time t’, fontsize ’,2)
ylabel (’Response y(t)’, fontsize’,2)
//set (gca(),” grid” [0.3 0.3])
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Experiment: 2

Determine eigen values of the
state model. Also convert the
state model into transfer
function.

Scilab code Solution 2.02 Lab02

2 //

// Lab. 02: Determine eigen values of the state
model .

// Convert the state model into transfer function.

//

//scilab —5.5.0

//Operating System : OS X 10.9.3

//Clean the environment
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clc;
clear all;

/] clf;

// State space representation
-5 -25 -5];

A=[0 1 0; O O 1;
B=[0; 25;-120];
c=[1 0 0];

D=0;

sysl=syslin(’c’,
mprintf (’State space

system is’)
disp(sys1l)

A,B,C,D);

representation of the given

// Eigen values of system matrix

eig_val=spec(A)

mprintf ("Eigen values

disp(eig_val)

of the system matrix are’)

// Transfer function of the given system

gl=ss2tf (sysl)

mprintf (' Transfer function

given system
disp(gl)

is )

representation of the




Experiment: 3

Transform the given system
having distinct eigen values
into controllable canonical and
diagonal form.

Scilab code Solution 3.03 Lab3

2 //

// Lab. 03: Transform the given system having
distinct eigen values into
// controllable canonical and diagonal form.

//

//scilab —5.5.0
//Operating System : OS X 10.9.3

//Clean the environment
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clc;
clear all;

/] clf;

// State space model
A=[-3 1; 1 -3];
B=[1;2];

c=[2 3];

D=0;

sys=syslin(’c’,A,B,C,D)

mprintf (’State space representation of the given
system is’)

disp(sys)

// Eigen values of system matrix

eig_val=spec(A)

mprintf ("Eigen values of the system matrix are’)
disp(eig_val)

// Controllable canonical form

[Ac, Bc Tl=canon(A,B)

T=flipdim(T,2) ;

Ac=T\AxT;

Bc=T\B;

Cc=CxT,;

Dc=D;

sysc=syslin(’c’,Ac,Bc,Cc,Dc)

mprintf (’State space representation of the given
system in Controllable canonical form is’)

disp(sysc)

// Diagonal form
[Ad M]l=bdiag(A);
Bd=M\B;

Cd=Cx*xM;

Dd=D;
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47 sysd=syslin(’c’,Ad,Bd,Cd,Dd)

48 mprintf (’State space representation of the given
system in Diagonal form is’)

49 disp(sysd)
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Experiment: 4

Obtain the step and impulse
response of the state model.

Scilab code Solution 4.04 Lab 04

//

// Lab. 04: Obtain the step and impulse response of
the state model.

//

//scilab —5.5.0

//Operating System : OS X 10.9.3

//Clean the environment

clc;
clear all;
clf;

// State space representation

A=[-2 -1;

-1 -1];
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B=[1;1];

c=[0 2];

D=0;

x0=[0;5]; // Initial condition
sys=syslin(’c’,A,B,C,D)

// Response to a given input

figure (0)

t=1linspace (0,20,1001);

temp=size (t);

u=ones (temp (1) ,temp(2)); // Exogenous signal(step)

y=csim(u,t,sys,x0)

plot(t,y)

title(’Unit step response of the system’, fontsize
,4)

xlabel ('Time t’, fontsize ’,2)

ylabel ('Response y(t)’, fontsize’ ,2)

Y

// Response to a given input

figure (1)

t=linspace(0,10,1001);
y=csim(’impuls’,t,sys)

plot(t,y)

title(’Impulse response of the system
xlabel ('Time t’, fontsize’,2)

ylabel (’Response y(t)’, fontsize’,2)

Y

, fontsize’,4)
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Response y(t)

Unit step response of the system

Figure 4.1: Lab 04
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Figure 4.2: Lab 04
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Experiment: 5

Check for the controllability
and observability of a given
system.

Scilab code Solution 5.05 Lab05

2 //

// Lab. 05: Check for the controllability and
observability of a given system.
//

//scilab —5.5.0
//Operating System : OS X 10.9.3

//Clean the environment
clc;
clear all;

/] clf;
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// State space representation
A=[-5 1 0; 0 -2 1; 0 0 -11;
B=[6 0 1]1°;

c=[1 0 0];

D=0;

sys=syslin(’c’,A,B,C,D)

// Controllability test

n=cont_mat (sys)
mprintf (" Controllability matrix is’)
disp(n)

if rank(n)==3 then

disp(’System is controllable ’)
else

disp(’System is uncontrollable ”)
end

// Observability test

m=obsv_mat (sys)
mprintf (" Observability matrix is’)
disp(m)

if rank(m)==3 then

disp(’System is observable )
else

disp(’System is unobservable’)
end
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Experiment: 6

Obtain state feedback gain
matrix for the given system.

Scilab code Solution 6.06 Lab 06

//

// Lab. 06: Obtain state feedback gain matrix for
the given system.

//

//scilab —5.5.0

//Operating System : OS X 10.9.3
//Clean the environment

clc;
clear all;
clf;

// State space representation
A=[0 1 0; 0 0 1; -1 -5 -6];
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B=[0 0 1]’;
c=[0 0 1];
D=0;

// Desired poles
Pd=[-1+2%%i -1-2%%i -10];

// State feedback gain matrix
K=ppol (A,B,Pd)

//Closed loop system
sys=syslin(’c’,A-B*K,B,C,D)

//Response of closed loop system

t=linspace (0,20,1001);

y=csim(’step ’,t,sys)

plot(t,y)

title (’Response of the closed loop system
')

xlabel ("Time t’, fontsize ’,2)

ylabel (’Response y(t)’, fontsize’,2)

Y

, fontsize
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Experiment: 7

Design a full state observer for

the system.

Scilab code Solution 7.07 Lab 07

//

// Lab. 07: Design a full
system .

//

state observer for the

//scilab —5.5.0
//Operating System : OS X

//Clean the environment
clc;

clear all;

clf;

//State space model

10.9.3
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A=[1 -1 2; 2 -1 3; -1 -2 4];
B=[1 1 0]’;

C=[1 1 0];

D=0;

//Stabilizer design
// Desired poles
Pd=[-7 -5 -10];

// State feedback gain matrix
K=ppol (A,B,Pd)

//Computation of observer gain
obsr_pol=[-20+0.5%%i -20-0.5%%i -60];
L=ppol(A’,C’,o0obsr_pol)”’

// Augmented system

temp=size (A);

Aa=[A-Bx*K B*K; zeros(temp (1) ,temp(2)) A-LxC
1

temp=size (Aa) ;

Ba=zeros (temp (1) ,1);

Ca=eye (6,6) ;

sys=syslin(’'c’,Aa,Ba,Ca,zeros(6,1))

//Observer error

figure (0)

t=1linspace(0,0.6,1001);

x0=[0 00 1 11 1]1°7;

temp=size (t);

u=zeros (temp (1) ,temp(2)); // Exogenous signal(step)
y=csim(u,t,sys,x0)

plot(t,y(4:6,:))

title(’Observer error’, fontsize’ ,h 4)
xlabel ('$t$’, "fontsize ’,2)

ylabel (’$x(t)—\hat x(t)$’, fontsize’,2)
legend ("$x_1$ 7, "$x_2% 7, "$x_.3% ")
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Experiment: 8

Determine steady state error of

the given system.

Scilab code Solution 8.08 Lab 08

//

// Lab. 08: Determine steady state error of the
given system .

//

//scilab —5.5.0

//Operating System : OS X 10.9.3
//Clean the environment

clc;
clear all;
clf;

//State space model
a=[0 1;-7 -9];
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b=[0 1]’;

c=[4 1];

d=0;
sys=syslin(’c’,a,b,c,d)

//Error in response of the system
t=1linspace (0,20,1001);
y=csim(’step ' ,t,sys)

plot(t,1-y)

title( Error in response’, fontsize ’ ,4)
xlabel ('Time t’, fontsize ’,2)

ylabel ('Response y(t)’, fontsize’ ,2)

// Steady state error computation
ess=1+cx*xinv(a)*b
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Experiment: 9

Compensation of system using
lead compensator designed via
root locus technique.

Scilab code Solution 9.09 Lab 09

//

// Lab. 09: Compensation of system using lead
compensator designed via root
//locus technique.

//

//scilab —5.5.0

//Operating System : OS X 10.9.3
//Clean the environment

clc;

clear all;

clf;
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Figure 9.1: Lab 09

//System transfer function and its root locus

s=poly (0, ’s’);
g=1/(s*x(s+1));

evans (g)

//Designed compensator
gc=(s+2) /(s+8);

//Root locus of compensated system

evans (g*xgc)
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Experiment: 10

Design a lead compensator for
the given system using bode
plot.

Scilab code Solution 10.10 Lab 10

//

// Lab.10: Design a lead compensator for the given
system using bode plot.

// System is g=K/s(s+2). Design specifications: Kv
=20 sec —1 and PM=45 deg.

//

//scilab —5.5.0
//Operating System : OS X 10.9.3

//Clean the environment

clc;
clear all;
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clf;

//Desired specifications
Phi_s=45;
K=40;

//Uncompenstated system
s=poly (0, s ’);
g=syslin(’c’,40/(s*x(s+2)));

//Bode plot of the uncompenmsated system

bode (g,0.001,1000)
title('uncompensated system ')
gm=g_margin (g)

pm=p_margin(g)

epsl1=10;
Phi_m=(Phi_s-pm+epsl)*%pi/180
alpha=(1-sin(Phi_m))/(1+sin(Phi_m))
gain_phi_m=-10%1logl10(1/alpha)

// Observed frequency at gain_phi_m
wc2=9.3

// Corner frequency
wl=wc2*sqrt (alpha)
w2=wc2/sqrt (alpha)
Ge=(s+wl)/(s+w2)

//The bode plot of compensated system
figure (1) ;

bode (Gc*xg,0.001,1000) ,

title (’Compensated system ’)
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Figure 10.2: Lab 10
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