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Experiment: 1

Generation of Discrete Signals

Scilab code Solution 1.1 Unit Sample Sequence

//Caption: Unit Sample Sequence

clear;

clc;

close;

L = 4; //Upperlimit

n = -L:L;

x = [zeros(1,L),1,zeros(1,L)];
b = gca();

b.y_location = "middle”;
plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =4;
xtitle(’Graphical Representation of Unit Sample

Y )

Sequence’,’'n’, ’x[n] ) ;

Scilab code Solution 1.2 Unit Step Sequence

//Caption: Unit Step Sequence



— =
= O © 00 O O i W N

—_
\)

—_
w

© 00 J O U i W N

— = = =
w N = O

clear;

clc;

close;

L
n
X

4, //Upperlimit
-L:L;
[zeros(1,L),ones(1,L+1)];

a=gca();

a.y_location = "middle”;

plot2d3(’gnn’,n,x)

title(’Graphical Representation of Unit Step Signal’

)

xlabel (’ n’
)

ylabel (’
[n] ")

Scilab code Solution 1.3 Discrete Ramp Sequence

//Caption: Discrete Ramp Sequence

clear;

clc;

close;

L = 4; //Upperlimit

n = -L:L;

x = [zeros(1,L),0:L];

b = gca();

b.y_location = ’'middle’;

plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =2;

xtitle(’Graphical Representation of Discrete Unit

? Y

Ramp Sequence’,’n’,’x[n]’);
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Scilab code Solution 1.4 Exponentially Decreasing Signal

//Caption: Exponentially Decreasing Signal

clear;

clc;

close;

a =0.5;

n = 0:10;

X (a)"n;

a=gca();

a.x_location “origin”;

a.y_location “origin”;

plot2d3(’gnn’,n,x)

a.thickness = 2;

xtitle(’Graphical Representation of Exponentially
Decreasing Signal’,’'n’,’x[n] ) ;

Scilab code Solution 1.5 Exponentially Increasing Signal

//Caption: Exponentially Increasing Signal

clear;

clc;

close;

a =1.5;

n =1:10;

x = (a)’"n;

a=gca();

a.thickness = 2;

plot2d3(’gnn’,n,x)

xtitle (" Graphical Representation of Exponentially
Increasing Signal’,’'n’,’ ’x[n]’);
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Experiment: 2

Linear and Circular
Convolution of two sequences

Scilab code Solution 2.1 Program for Linear Convolution

//Caption:Program for Linear Convolution
clc;
clear all;

close ;

x = input(’enter x seq’);
h = input(’enter h seq’);
m = length(x);

n = length(h);

//Method 1 Using Direct Convolution Sum Formula
for i = 1:n+m-1
conv_sum = O;
for j = 1:1
if (((i-j+1) <= n)&(j <= m))

conv_sum = conv_sum + x(j)*xh(i-j+1);
end ;
y(i) = conv_sum;
end ;
end ;
disp(y’, "Convolution Sum using Direct Formula Method
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//Method 2 Using Inbuilt Function

f = convol(x,h)

disp(f, Convolution Sum Result using Inbuilt Funtion
=)

//Method 3 Using frequency Domain multiplication

N = n+m-1;

x = [x zeros(1,N-m)];

h [h zeros(1,N-n)];

f1 = fft(x)

f2 = fft(h)

f3 = f1.*xf2; // freq domain multiplication

f4 ifft (£3)

disp (f4, "Convolution Sum Result DFT — IDFT method =’
)

//f4 = real(f4)

subplot (3,1,1);

plot2d3(’gnn’,x)

xtitle ("’ Graphical Representation of Input signal x7)

subplot (3,1,2);

plot2d3(’'gnn’,h)

xtitle (' Graphical Representation of Impulse signal h
)5

subplot (3,1,3);

plot2d3(’gnn’,y)

xtitle (' Graphical Representation of Output signal y’
)

// Result

//enter x seq [1 1 1 1]

//enter h seq [1 2 3]

// Convolution Sum using Direct Formula Method =

/) 1. 3. 6. 6. 5. 3.

// Convolution Sum Result using Inbuilt Funtion =

/) 1. 3. 6. 6. 5. 3.

// Convolution Sum Result DFT — IDFT method =

/) 1. 3. 6. 6. 5. 3.
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Scilab code Solution 2.2 Program to find the Cicrcular Convolution

//Caption: Program to find the Cicrcular Convolution
of given
//discrete sequences using Matrix method

clear;

clc;

x1 = [2,1,2,1]; //First sequence

x2 [1,2,3,4]; //Second sequence

m = length(x1); //length of first sequence
n = length(x2); //length of second sequence
//To make length of x1 and x2 are Equal

if (m >n)
for i = n+l:m
x2(i) = 0;
end
elseif (n>m)
for i = m+1l:n
x1(i) = 0;
end
end
N = length(x1l);
x3 = zeros(1,N); //x3 = Circular convolution result

a(l) = x2(1);
for j = 2:N
a(j) = x2(N-j+2);

end
for i =1:N
x3(1) = x3(1)+x1(i)*a(i);
end
X(1,:)=a;

// Calculation of circular convolution
for k = 2:N
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for j =2:N
x2(j) = a(j-1);
end
x2(1) = a(N);
X(k,:)= x2;
for i = 1:N
a(i) = x2(i);
x3(k) = x3(k)+x1(i)*a(i);
end
end
disp(X, ’Circular Convolution Matrix x2[n]=")

disp(x3, "Circular Convolution Result x3[n

// Result

// Circular Convolution Matrix x2[n]=

//
//
//
//
//
//
//
//
//

=~ W N =

Circular Convolution Result x3[n]

14.

W N

16.

MO = O

14.

s W N

16.

10
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Experiment: 3

Circular convolution using FFT

Scilab code Solution 3.1 Performing Circular COnvolution Using DFT
IDFT method

//Caption: Performing Circular COnvolution Using DFT-
IDFT method

clear all;

clc;

close;

L = 4; //Length of the Sequence

N =4; // N —point DFT

x1 = [2,1,2,1];

x2 = [1,2,3,4];

//Computing DFT

X1 = fft(x1,-1);

X2 = fft(x2,-1);

disp (X1, 'DFT of x1[n] is X1(k)=")

disp (X2, 'DFT of x1[n] is X2(k)=")

//Multiplication of 2 DFTs

X3 = X1.%X2;

disp (X3, 'DFT of x3[n] is X3(k)=")

//Circular Convolution Result

x3 =abs (fft(X3,1))

disp(x3,’Circular Convolution Result x3[n]=")

11
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0

2.

- 2.

2.1

// DFT of xI[n] is X1(k)=
//

// 6. 0 2. 0
//

// DFT of x1[n] is X2(k)=
//

// 10, — 2. + 2.0 -
//

// DFT of x3[n] is X3(k)=
//

// 60. 0 — 4.

//

// Circular Convolution Result x3[n]=
//

// 14. 16. 14,

16.

1

12
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Experiment: 4

Linear Convolution using
Circular Convolution

Scilab code Solution 4.1 Performing Linear Convolution using Circular
Convolution

//Caption: Performing Linear Convolution using
Circular Convolution

clear;

clc;

close;

h = [1,2,3]; //Impulse Response of LTI System
x = [1,2,2,1]; //Input Response of LTI System
N1 = length(x);

N2 = length(h);

N = N1+N2-1

disp (N, ’Length of Output Response y(n)’)
//Padding zeros to Make Length of ’'h’ and ’'x’
//Equal to length of output response 'y’
hi1 = [h,zeros(1,N-N2)1];

x1 = [x,zeros(1,N-N1)];

//Computing FFT

H = fft(hl,-1);

13



18 X = fft(x1,-1);

19 //Multiplication of 2 DFTs

20 Y = X.xH

21 //Linear Convolution Result

22 y =abs(fft(Y,1))

23 disp (X, 'DFT of i/p X(k)=")

24 disp(H, 'DFT of impulse sequence H(k)=")
25 disp (Y, 'DFT of Linear Filter o/p Y(k)=")
26 disp(y, 'Linear Convolution result y[n]=")
27 //Result

28 // Length of Output Response y(n)

29 //
30 // 6.

31 /)
32 // DFT of i/p X(k)=

33 /)

34 // 6. — 3.46410161 0 0 0 3.46410161

35 //

36 // DFT of impulse sequence H(k)=

37 //

38 // 6. 0.5 — 4.3301271 — 1.5 + 0.86602541
2. — 1.5 — 0.86602541 0.5 + 4.3301271

39 //
40 // DFT of Linear Filter o/p Y(k)=

a /)

42 /) 36. — 15. — 1.73205081i 0o 0 0 - 15.
+ 1.7320508i

43 //

44 /) Linear Convolution result y[n]=

5 /)
46 // 1. 1. 9. 11. 8. 3.

14
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Experiment: 5

Calculation of FFT and IFFT
of a sequence

Scilab code Solution 5.5 Performing FFT and IFF'T of a discrete sequence

//Caption: Performing FFT and IFFT of a discrete
sequence

clear;

clc;

close;

L = 4; //Length of the Sequence

N 4, // N —point DFT

X [1,2,3,4];

//Computing DFT

X = fft(x,-1);

disp (X, 'FFT of x[n] is X(k)=")

x =abs(fft(X,1))

disp(x, 'IFFT of X(k) is x[n]=")

//Plotting the spectrum of Discrete Sequence

subplot(2,1,1)

a=gca();

a.data_bounds=[0,0;5,10];

plot2d3(’gnn’,0:1length(x)-1,x)

b = gce();

15
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b.children (1) .thickness =3;

xtitle (' Graphical Representation of
Sequence’, 'n’, ’x[n] ) ;

subplot(2,1,2)

a=gce () ;

a.data_bounds=[0,0;5,10];

plot2d3(’'gnn’,0:1length(X)-1,abs (X))

b = gce();

b.children (1) .thickness =3;

xtitle(’Graphical Representation of
Spectrum ’, 'k 7, 'X(k) ") ;

// Result

//FFT of x[n] is X(k)=

//

/) 10, — 2.+ 2.i — 2. — 2. —
//

//IFFT of X(k) is x[n]=

//

/) 1. 2. 3. 4.

Discrete

Discrete

16
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Experiment: 6

Time and Frequency Response
of LTI systems

Scilab code Solution 6.1 Time and Frequency Response

//Caption: Program to generate and plot the impulse
response and frequency

//response of a Linear constant coefficient first
order Differential Equation

//[1].Impulse response h(t)= exp(—axt)u(t), A>0

//[2]. Frequency response H(jw) = 1/(jw+a)

clear;

clc;

close;

//[1]. To generate and plot the impulse response
a =1; //Constant coefficient a =1

Dt = 0.005;

t = 0:Dt:10;
ht = exp(-ax*t);

figure (1)

a = gca();

a.y_location = "origin”;
plot (t,ht);

xlabel (’'time t ——— >7);

17
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ylabel ('h(t) ")
title(’Impulse Repsonse of Ist Order Linear Constant
Coeff. Differential Equ.’)

//

//12]. Finding Frequency response using Continuous
Time Fourier Transform

Wmax = 2*%pix*1; //Analog Frequency = 1Hz

K = 4,;

k = 0:(K/1000) :K;

W = kxWmax/K;

HW = ht*x exp(-sqrt(-1)*t’*W) * Dt;

HW_Mag = abs (HW) ;

W = [-mtlb_fliplr(Ww), W(2:1001)1; // Omega from —
Wmax to Wmax

HW_Mag = [mtlb_fliplr (HW_Mag) ,HW_Mag(2:1001)];

[HW_Phase ,db] = phasemag (HW);

HW_Phase = [-mtlb_fliplr (HW_Phase) ,HW_Phase (2:1001)
1

figure (2)

//Plotting Magnitude Response

subplot(2,1,1);

a = gca();

a.y_location = "origin”;

plot (W,HW_Mag);

xlabel (’Frequency in Radians/Seconds——> W’);

ylabel (’abs (H(jW)) ")

title(’Magnitude Response’)

//Plotting Phase Reponse

subplot(2,1,2);

a = gca();

a.y_location = "origin”;

a.x_location = "origin’;

plot (W,HW_Phasex*%pi/180) ;

xlabel (’ Frequency in
Radians/Seconds——> W’) ;

ylabel ('’

<H

(JW)

18



49 title(’Phase Response in Radians’)
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Experiment: 7

Sampling, Verification of
Sampling and Effect of aliasing

check Appendix AP 1 for dependency:

sincnew.sce

Scilab code Solution 7.1 Sampling and Reconstruction of a Signal

//Caption: Sampling and Reconstruction of a Signal x
(t) = exp(—Ax|t])

//Discrete Time Sampled Signal x(nT)= exp(—Ax|nT|)

//Following Sampling Frequencies are used:

//[1].Fs =1 Hz [2].Fs = 2 Hz [3].Fs = 4Hz [4].Fs
=20 Hz [5].Fs =100Hz

// Aliasing Effect: As the Sampling frequency
increases aliasing effect decreases

clear;

clc;

close;

// Analog Signal

A =1, //Amplitude

Dt = 0.005;

t = -2:Dt:2;

20
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//Continuous Time Signal

xa = exp(-Axabs(t));

//Discrete Time Signal

Fs =input (’Enter the Sampling Frequency in Hertz ) ;
//Fs = 1Hz,2Hz,4Hz,20Hz,100Hz

Ts = 1/Fs;

nTs = -2:Ts:2;

x = exp(-A*xabs(nTs));

// Analog Signal reconstruction

Dt = 0.005;
t = -2:Dt:2;
Xa = x *sincnew(Fs*(ones(length(nTs) ,1)*t-nTs’*ones

(1,length(t))));
//Plotting the original signal and reconstructed

signal
subplot (2,1,1);
a =gca();
a.x_location = "origin’;
a.y_location = "origin”;

plot (t,xa);

xlabel(’t in sec.’);

ylabel ('xa(t) )

title(’Original Analog Signal’)

subplot(2,1,2);

a =gca();

a.x_location “origin”;

a.y_location “origin”;

xlabel(’t in sec.’);

ylabel ('xa(t)’)

title(’Reconstructed Signal using sinc function , Fs
= 100Hz") ;

plot (t,Xa);

21
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Experiment: 8

Design of FIR Filters Window
Design

Scilab code Solution 8.1 Program to Design FIR Low Pass Filter

//Caption: Program to Design FIR Low Pass Filter
clc;
close;
M = input(’Enter the Odd Filter Length =");
//Filter length
Wc = input(’Enter the Digital Cutoff frequency =7);
//Digital Cutoff frequency

Tuo = (M-1)/2 //Center Value
for n = 1:M
if (n == Tuo+1)
hd(n) = Wc/%pi;
else
hd(n) = sin(Wc*x((n-1)-Tuo))/(((n-1)-Tuo)*%pi)
end
end

//Rectangular Window
for n = 1:M
W(n) = 1;

22
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end

//Windowing Fitler Coefficients

h = hd.*W;

disp(h, "Filter Coefficients are’)

[hzm,fr]=frmag(h,256) ;

hzm_dB = 20*1ogl10(hzm) ./max (hzm) ;

subplot(2,1,1)

plot (2*fr,hzm)

xlabel ("Normalized Digital Frequency W’);

ylabel ('Magnitude ') ;

title(’Frequency Response 0f FIR LPF using
Rectangular window ')

xgrid (1)

subplot (2,1,2)

plot (2*xfr,hzm_dB)

xlabel ("Normalized Digital Frequency W’);

ylabel ('Magnitude in dB’);

title(’Frequency Response 0f FIR LPF using
Rectangular window ’)

xgrid (1)

// Result

//Enter the Odd Filter Length = 7

//Enter the Digital Cutoff frequency = %pi/2

//

// Filter Coefficients are
//

//  — 0.1061033

// 1.949D—-17 = 0.0

// 0.3183099

// 0.5

/] 0.3183099

// 1.949D—17 = 0.0

// — 0.1061033

23
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Scilab code Solution 8.2 rogram to Design FIR High Pass Filter

//Caption: Program to Design FIR High Pass Filter

clear;

clc;

close;

M = input (’Enter the Odd Filter Length =");

//Filter length

Wc = input (’Enter the Digital Cutoff frequency =7);

//Digital Cutoff frequency

Tuo = (M-1)/2 //Center Value
for n = 1:M
if (n == Tuo+1)
hd(n) = 1-Wc/%pi;
else

hd(n) = (sin(%pi*((n-1)-Tuo)) -sin(Wc*((n-1)-
Tuo)))/(((n-1)-Tuo)*%pi);
end
end
//Rectangular Window
for n = 1:M
W(n) = 1;
end
//Windowing Fitler Coefficients
h = hd.x*xW;
disp(h, "Filter Coefficients are’)
[hzm,fr]=frmag(h,256) ;
hzm_dB = 20*x1ogl10(hzm) ./max (hzm) ;
subplot(2,1,1)
plot (2%fr,hzm)
xlabel ("Normalized Digital Frequency W’);
ylabel ("Magnitude ') ;
title(’Frequency Response 0f FIR HPF using
Rectangular window ")
xgrid (1)
subplot(2,1,2)
plot (2*xfr,hzm_dB)
xlabel ('Normalized Digital Frequency W’);
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ylabel ('Magnitude in dB’);

title (’'Frequency Response 0f FIR HPF using
Rectangular window ")

xgrid (1)

//Result

//Enter the Odd Filter Length = 5

//Enter the Digital Cutoff frequency = %pi/4

// Filter Coefficients are

// — 0.1591549
// — 0.2250791
/] 0.75

/) — 0.2250791
/) — 0.1591549

Scilab code Solution 8.3 Program to Design FIR Band Pass Filter

//Caption: Program to Design FIR Band Pass Filter
clear;
clc;
close;
M = input (' Enter the Odd Filter Length =");
// Filter length
//Digital Cutoff frequency [Lower Cutoff, Upper
Cutoff |
Wc = input(’Enter the Digital Cutoff frequency =7);
Wec2 = Wc(2)
Wcil We (1)
Tuo (M-1) /2 //Center Value
hd = zeros(1,M);
W = zeros(1,M);
for n = 1:11

if (n == Tuo+1)
hd(n) = (Wc2-Wcl)/%pi;
else

25
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hd(n) = (sin(Wc2*((n-1)-Tuo)) -sin(Wclx*x((n-1)-

Tuo)))/(((n-1)-Tuo) *%pi);
end
if (abs (hd(n)) <(0.00001))
hd (n)=0;
end
end
hd;
//Rectangular Window
for n = 1:M
W(n) = 1;
end
//Windowing Fitler Coefficients
h = hd.*W;
disp(h, "Filter Coefficients are’)
[hzm,fr]=frmag(h,256) ;
hzm_dB = 20%*1ogl10 (hzm) ./max (hzm) ;
subplot(2,1,1)
plot (2xfr ,hzm)
xlabel ("Normalized Digital Frequency W’);
ylabel ('Magnitude ') ;
title ('Frequency Response 0f FIR BPF using
Rectangular window ")
xgrid (1)
subplot(2,1,2)
plot (2*fr ,hzm_dB)
xlabel ('Normalized Digital Frequency W’);
ylabel ("Magnitude in dB’);
title(’Frequency Response 0f FIR BPF using
Rectangular window ’)

xgrid (1)

// Result

//Enter the Odd Filter Length = 11

//Enter the Digital Cutoff frequency = [%pi/4,3%%pi
/4]

// Filter Coefficients are

// 0. 0. 0. — 0.3183099 0. 0.5
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0.3183099 0. 0. 0.

Scilab code Solution 8.4 Program to Design FIR Band Reject Filter

//Caption: Program to Design FIR Band Reject Filter

clear ;

clc;

close;

M = input(’Enter the Odd Filter Length =");

//Filter length

//Digital Cutoff frequency [Lower Cutoff, Upper
Cutoff |

Wc = input(’Enter the Digital Cutoff frequency =7);

Wc2 = Wc(2)
Wecl = We (1)
Tuo = (M-1)/2 //Center Value

hd = zeros(1,M);
W = zeros(1,M);
for n = 1:M

if (n == Tuo+1)
hd(n) = 1-((Wc2-Wcl1)/%pi);
else

hd(n)=(sin(%pi*((n-1)-Tuo))-sin(Wc2*((n-1)-Tuo) )+
sin(We1*((n-1)-Tuo)))/(((n-1)-Tuo) *%pi);
end
if (abs (hd(n)) <(0.00001))
hd (n)=0;
end
end

//Rectangular Window
for n = 1:M
W(n) = 1;
end
//Windowing Fitler Coefficients
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h = hd.x*xW;

disp(h, "Filter Coefficients are’)

[hzm,fr]=frmag(h,256) ;

hzm_dB = 20x1ogl10(hzm) ./max (hzm) ;

subplot(2,1,1)

plot (2*xfr ,hzm)

xlabel ("Normalized Digital Frequency W’);

ylabel ('Magnitude ') ;

title(’Frequency Response 0f FIR BSF using
Rectangular window ’)

xgrid (1)

subplot(2,1,2)

plot (2%xfr ,hzm_dB)

xlabel ("Normalized Digital Frequency W’);

ylabel ("Magnitude in dB7);

title(’Frequency Response 0f FIR BSF using
Rectangular window ')

xgrid (1)

// Result

//Enter the Odd Filter Length = 11

//Enter the Digital Cutoff frequency =[%pi/3,2*x%pi

/3]
// Filter Coefficients are
//column 1 to 9

// 0. — 0.1378322 0. 0.2756644
0.6666667 0. 0.2756644 0.

//column 10 to 11

/] — 0.1378322 0.
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Experiment: 9

Design of FIR Filters
Frequency Sampling

Scilab code Solution 9.1 Design of FIR LPF Filter using Frequecny Sam-
pling Technique

//Cpation: Design of FIR LPF Filter using Frequecny
Sampling Technique

clear;
clc;
close;
M =15;
Hr = [1,1,1,1,0.4,0,0,0];
for k =1:1length (Hr)
G(k)=((-1)"(k-1))*Hr (k) ;
end
h zeros (1,M) ;
U (M-1)/2
for n = 1:M
hi = 0;
for k = 2:U+1
hl1 =G(k)*cos ((2*x%pi/M)*(k-1)*((n-1)+(1/2)))+h1;
end
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h(n) = (1/M)*x (G(1)+2xhl);

end

disp(h, 'Filter Coefficients are h(n)=")

[hzm,fr]=frmag(h,256) ;

hzm_dB = 20x1ogl10(hzm) ./max (hzm) ;

subplot(2,1,1)

plot (2*%fr,hzm)

a=gca();

xlabel ("Normalized Digital Frequency W’);

ylabel ("Magnitude ') ;

title(’Frequency Response 0f FIR LPF using Frequency
Sampling Technique with M = 15 with Cutoff
Frequency = 0.466 ")

xgrid (2)

subplot (2,1,2)

plot (2xfr,hzm_dB)

a=gca();

xlabel ('Normalized Digital Frequency W’);

ylabel ("Magnitude in dB’);

title(’Frequency Response 0f FIR LPF using Frequency
Sampling Technique with M = 15 with Cutoff
Frequency = 0.466 ")

xgrid (2)

// Result

//Filter Coefficients are h(n)=

//column 1 to 7

//

// —0.0141289 —0.0019453 0.04 0.0122345
—0.0913880 —0.0180899 0.3133176

//

//column 8 to 14

//

//0.52 0.3133176 — 0.0180899 — 0.0913880
0.0122345 0.04 — 0.0019453

//

//column 15

//

/) — 0.0141289
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Experiment: 10

Design of IIR Filters-
Butterworth

Scilab code Solution 10.1 Digital IIR First Order Butterworth LPF Fil-
ter

//Caption: To design a digital IIR First Order
Butterworth LPF Filter

//Using Bilinear Transformation

clear all;

clc;

close;

s = poly(0,’s’);

Omegac = 0.2*%pi; // Cutoff frequency

H = Omegac/(s+0Omegac); //Analog first order
Butterworth filter tranfer function

T =1;//Sampling period T = 1 Second

z = poly (0, ’z’);

Hz = horner (H, (2/T)*((z-1)/(z+1))) //Bilinear
Transformation

HW =frmag(Hz(2),Hz(3),512); //Frequency response
for 512 points

W = 0:%pi/b11:%pi;

a=gca();
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a.thickness = 1;
plot (W/%pi,HW,’
a.foreground =
a.font_style
xgrid (1)
xtitle ("Magnitude Response of Single pole LPF Filter
Cutoff frequency = 0.2xpi’, Normalized Digital
Frequency——>", "Magnitude ’) ;

)

)

© =

)

Scilab code Solution 10.2 HPF Using Digital Filter Transformation

//Caption: To design First Order Butterworth Low
Pass Filter and covert it into

// HPF Using Digital Filter Transformation

clear all;

clc;

close;

s = poly(0,’s’);

Omegac = 0.2*%pi; //Filter cutoff frequency

H = Omegac/(s+0Omegac); //First order Butterworth IIR
filter

T =1;//Sampling period T = 1 Second

z = poly (0, 'z");

Hz_LPF = horner(H,(2/T)*((z-1)/(z+1))); //Bilinear
Transformation

alpha = -(cos((Omegac+0megac)/2))/(cos((Omegac-
Omegac)/2));

HZ_HPF=horner (Hz_LPF,-(z+alpha)/(1+alphax*z))//LPF to
HPF digital transformation

HW =frmag(HZ_HPF(2),HZ_HPF(3),512); //Frequency
response for 512 points

W = 0:%pi/511:%pi;

a=gca();

a.thickness = 1;

plot (W/%pi,HW, 't )
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a.foreground = 1;
a.font_style 9;
xgrid (1)
xtitle ("Magnitude Response of Single pole HPF Filter
Cutoff frequency = 0.2%xpi’, "Normalized Digital
Frequency W/pi——>", Magnitude ') ;

Scilab code Solution 10.3 BPF using Digital Transformation

///Caption:To Design a Digital IIR Butterworth LPF
Filter from Analog IIR
//Butterworth Filter and LPF to BPF using Digital

Transformation

clear all;

clc;

close;

omegaP = 0.2*%pi; //Filter cutoff frequency

omegal = (1/5)*%pi; //Lower Cutoff frequency for
BSF

omegalU = (3/5)*%pi; //Upper Cutoff frequency for
BSF

z=poly (0, ’z");

H_LPF = (0.245)*(1+(2z"-1))/(1-0.509%(z"-1)); //
Bilinear transformation

alpha = (cos((omegaU+omegal)/2)/cos((omegaU-omegal)
/2));//parameter ’alpha’

//parameter 'k’

k = (cos((omegaU - omegal)/2)/sin((omegalU - omegal)
/2))*tan (omegaP/2) ;

NUM =-((z72) -((2*alpha*xk/(k+1))*z)+((k-1)/(k+1)));

DEN = (1-((2*alpha*k/(k+1))*z)+(((k-1)/(k+1))*(z"2))
)

HZ_BPF=horner (H_LPF ,NUM/DEN); //LPF to BPF conversion

using digital transformation
disp (HZ_BPF, 'Digital BPF IIR Filter H(Z)= ");
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HW =frmag(HZ_BPF (2) ,HZ_BPF(3) ,512);//frequency
response

W = 0:%pi/5b11:%pi;

a=gca();

a.thickness = 1;

plot (W/%pi,HW,’

a.foreground =

a.font_style

xgrid (1)

xtitle ("Magnitude Response of BPF Filter cutoff
frequency [0.2,0.6] ", Normalized Digital
Frequency——>’, ’Magnitude ’) ;

)

b

© = o=

)

Scilab code Solution 10.4 BSF using Digital Transformation

//Caption:To Design a Digital IIR Butterworth LPF
Filter from Analog IIR
//Butterworth Filter and LPF to BSF using Digital

Transformation

clear all;

clc;

close;

omegaP = 0.2x%%pi; // Filter cutoff frequency

omegal = (1/5)*%pi; //Lower Cutoff frequency for
BSF

omegalU = (3/5)*%pi; //Upper Cutoff frequency for
BSF

z=poly (0, ’z");

H_LPF = (0.245)*(1+(2z7-1))/(1-0.509%(z"-1))//
Bilinear transformation

alpha = (cos((omegaU+omegal)/2)/cos((omegaU-omegal)
/2)); //parameter ’alpha’

k = tan((omegaU - omegal)/2)*tan(omegaP/2); //
parameter 'k’

NUM =((z"2) -((2%alpha/(1+k))*z)+((1-k)/(1+k))); //
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DEN = (1-((2%alpha/(1+k))*z)+(((1-k)/(1+k))*(z"2)));
//Denominator
HZ_BSF=horner (H_LPF ,NUM/DEN); //LPF to BSF
conversion using digital transformation
HW =frmag(HZ_BSF(2),HZ_BSF(3),512); //frequency
response for 512 points
W = 0:%pi/5b11:%pi;
a=gca();
a.thickness = 1;
plot (W/%pi ,HW, 'r ")
a.foreground = 1;
a.font_style 9
xgrid (1)
xtitle ("Magnitude Response of BSF Filter cutoff freq
[0.2,0.6] 7, Normalized Digital Frequency——>","’
Magnitude ") ;

)
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Experiment: 11

Design of I1IR Filters
Chebyshev

Scilab code Solution 11.1 To Design the Digtial Chebyshev IIR Filter

//Program To Design the Digtial Chebyshev IIR Filter

clear;

clc;

close;

Wp = input(’Enter the Digital Pass Band Edge
Frequency ’) ;

Ws = input(’Enter the Digital Stop Band Edge
Frequency ) ;

T = input(’Sampling Interval ’)

OmegaP = (2/T)*tan(Wp/2)

OmegaS = (2/T)*tan(Ws/2)

Deltal = input(’Enter the Pass Band Ripple’);

Delta?2 input ("Enter the Stop Band Ripple’);

Delta = sqrt(((1/Delta2)"2)-1)

Epsilon = sqrt (((1/Deltal) ~2)-1)

N = (acosh(Delta/Epsilon))/(acosh(OmegaS/0OmegaP))

N = ceil(N)

OmegaC = OmegaP/((((1/Deltal)"2)-1)"(1/(2*N)))

[pols,gn] = zpchl(N,Epsilon,OmegaP)
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Hs = poly(gn,’s’, coeff’)/real(poly(pols,’s’))

z = poly(0,’z’);

Hz = horner (Hs, ((2/T)*((z-1)/(z+1))))

HW =frmag(Hz(2),Hz(3),512); //Frequency response
for 512 points

W = 0:%pi/511:%pi;

a=gca();

a.thickness = 1;

plot (W/%pi,abs(HW), ')
a.foreground = 1;
a.font_style = 9;

xgrid (1)

xtitle ("Magnitude Response of Chebyshev LPF Filter ',
"Normalized Digital Frequency——>’,  Magnitude in
dB7) ;

//RESULT

//Enter the Digital Pass Band Edge Frequency 0.2x%%pi

//Enter the Digital Stop Band Edge Frequency 0.6x% %pi

//Sampling Interval 1

/] T =

//

// 1.

// OmegaP =

//

// 0.6498394
// OmegaS =

//

// 2.7527638
//Enter the Pass Band Ripple 0.8
//Enter the Stop Band Ripple 0.2

// Delta =

//

// 4.8989795
// Epsilon =
//

// 0.75

/N =

//
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// 1.2079548
/] N =

//

// 2.

// OmegaC =

//

// 0.7503699

// gn =

/] 0.2815275
// pols =

/] — 0.2652958
0.5305916 i

// Hs =

+ 0.5305916 1

// 0.2815275

— 0.2652958 —

// 0.3519094
/] Hz =

// 0.2815275

2

+ 0.5305916s + s

2

+ 0.5630550z + 0.28152752z

//

//
// 3.2907261

/] ——>0.5%0.5629

// ans =

//
// 0.28145

//

//—>Hz(2)= Hz(2

/] Hz =

//

//

// 0.0520086

//

2

— 7.2961813z + 5.4130926z

) /5.4130926

2

+ 0.1040172z 4+ 0.0520086z
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%0 // 2
o1 // 3.2907261 — 7.2961813z + 5.4130926%

2
03 //——>Hz(3) = Hz(3)/5.4130926

94 // Hz =

9% //

9% // 2
97 // 0.0520086 + 0.1040172z 4+ 0.0520086z
9% //
9 // 2
100 // 0.6079198 — 1.34787677 + 7

101 //
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Experiment: 12

Decimation by polyphase
decomposition

Scilab code Solution 12.1 Design of Ployphase Decimator

//Caption: Decimation by 2, Filter Length = 30

//Cutoff Frequency Wec = %pi/2

//Pass band Edge frequency fp = 0.25 and a Stop band

edge frequency fs = 0.31

// Choose the number of cosine functions and create
a dense grid

// in [0,0.25] and [0.31,0.5]

//magnitude for pass band = 1 & stop band = 0 (i.e)

[1 0]
//Weighting function =[2 1]
clear;
clc;
close;
M = 30; //Filter Length

D 2; //Decimation Factor = 2

We = %pi/2; //Cutoff Frequency

Wp Wec/(2x%pi); //Passband Edge Frequency
Ws 0.31; //Stopband Edge Frequency
hn=eqfir (M, [0 Wp;Ws .5],[1 01,[2 11);
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disp (hn, 'The LPF Filter Coefficients are:’)
//Obtaining Polyphase Filter Coefficients from hn
p = zeros(D,M/D);
for k = 1:D
for n = 1:(length(hn)/D)
p(k,n) = hn(D*(n-1)+k);
end
end
disp(p, 'The Polyphase Decimator for D =2 are:’)
//Result
//The LPF Filter Coefficients are:
//column 1 to 7
//0.0060203 — 0.0128037 — 0.0028534 0.0136687
— 0.0046761 — 0.0197002 0.0159915

//column 8 to 14

//0.0213811 — 0.0349808 — 0.0156251 0.0640230
— 0.0073600 — 0.1187325 0.0980522

//column 15 to 21

//0.4922476 0.4922476 0.0980522 — 0.1187325
— 0.0073600 0.0640230 — 0.0156251

//column 22 to 28

//— 0.0349808 0.0213811 0.0159915 — 0.0197002

— 0.0046761 0.0136687 — 0.0028534

//column 29 to 30
//— 0.0128037 0.0060203

//The Polyphase Decimator for D =2 are:
//column 1 to 7

//0.0060203 — 0.0028534 — 0.0046761 0.0159915
— 0.0349808 0.0640230 — 0.1187325
//— 0.0128037 0.0136687 — 0.0197002 0.0213811
— 0.0156251 — 0.0073600 0.0980522

//column 8 to 14
//0.4922476 0.0980522 — 0.0073600 — 0.0156251
0.0213811 — 0.0197002 0.0136687
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//0.4922476

0.0159915

//column 15
//— 0.0128037

//

0.0060203

— 0.1187325

— 0.0046761

0.0640230 — 0.0349808
— 0.0028534
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Experiment: 13

Periodogram based Spectral

Estimation

Scilab code Solution 13.1 Periodogram Estimate of Given Discrete Se-

quence

//Caption: Periodogram Estimate of Given Discrete

Sequence
//x(n) ={1,0,2,0,3,1,0,2}
//using DFT
clear;
clc;
close;
N =8; //8—point DFT
X
X

sequence

Pxx = (1/N)x(abs(X)."2); //Peridogram Estimate

disp (X, 'DFT of x(n)is X(k)=
disp (Pxx, 'Peridogram of x(n)

figure (1)

a = gca();

a.data_bounds =[0,0;8,11]
plot2d3(’gnn’,[1:N],Pxx)

b

44

)

(1,0,2,0,3,1,0,2]; //given discrete sequence
dft(x,-1); //8—point DFT of given discrete

is Pxx(k/N)=")



17 a.foreground = 5;

18 a.font_color = 5;

19 a.font_style = 5;

20 title(’Peridogram Estimate )

21 xlabel(’Discrete Frequency Variable K ————
22 ylabel (’Periodogram Pxx (k /N) ———>")

23 //Result

24 //DFT of x(n)is X(k)=

25 //

2% // 9.

27 // — 1.2928932 + 0.12132031i
28 // 2. + i

29 // — 2.7071068 + 4.12132031
30 // 3. — 3.674D-16i

31 // — 2.7071068 — 4.12132031i
32 // 2. — i

33 // — 1.2928932 — 0.12132031i
34 /)

35 // Peridogram of x(n) is Pxx(k/N)=
36 //

37 /) 10.125

38 /) 0.2107864

39 // 0.625

0 /) 3.0392136

41 /) 1.125

12 /) 3.0392136

43 /) 0.625

Ty 0.2107864
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Appendix

Scilab code APl function [y]l=sincnew(x)
i=find (x==0) ;

x(i)= 1; // don’t need this is /0 warning is
off

y = sin(%hpix*x) ./ (hpix*x);

y(i) = 1;

endfunction

sinc function
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