
Scilab Manual for
Digital Signal Processing

by Prof R.Senthilkumar, Assistant Professor
Electronics Engineering

Institute of Road and Transport Technology1

Solutions provided by
Mr. R.Senthilkumar- Assistant Professor

Electronics Engineering
Institute of Road and Transport Technology

February 12, 2026

1Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”Migrated Labs” section at the website
http://scilab.in

1

Contents

List of Scilab Solutions 3

1 Generation of Discrete Signals 4

2 Linear and Circular Convolution of two sequences 7

3 Circular convolution using FFT 11

4 Linear Convolution using Circular Convolution 13

5 Calculation of FFT and IFFT of a sequence 15

6 Time and Frequency Response of LTI systems 17

7 Sampling, Verification of Sampling and Effect of aliasing 20

8 Design of FIR Filters Window Design 22

9 Design of FIR Filters Frequency Sampling 29

10 Design of IIR Filters- Butterworth 32

11 Design of IIR Filters Chebyshev 37

12 Decimation by polyphase decomposition 41

13 Periodogram based Spectral Estimation 44

2

List of Experiments

Solution 1.1 Unit Sample Sequence 4
Solution 1.2 Unit Step Sequence 4
Solution 1.3 Discrete Ramp Sequence 5
Solution 1.4 Exponentially Decreasing Signal 6
Solution 1.5 Exponentially Increasing Signal 6
Solution 2.1 Program for Linear Convolution 7
Solution 2.2 Program to find the Cicrcular Convolution 9
Solution 3.1 Performing Circular COnvolution Using DFT IDFT

method . 11
Solution 4.1 Performing Linear Convolution using Circular Con-

volution . 13
Solution 5.5 Performing FFT and IFFT of a discrete sequence 15
Solution 6.1 Time and Frequency Response 17
Solution 7.1 Sampling and Reconstruction of a Signal 20
Solution 8.1 Program to Design FIR Low Pass Filter 22
Solution 8.2 rogram to Design FIR High Pass Filter 23
Solution 8.3 Program to Design FIR Band Pass Filter 25
Solution 8.4 Program to Design FIR Band Reject Filter 27
Solution 9.1 Design of FIR LPF Filter using Frequecny Sam-

pling Technique 29
Solution 10.1 Digital IIR First Order Butterworth LPF Filter . 32
Solution 10.2 HPF Using Digital Filter Transformation 33
Solution 10.3 BPF using Digital Transformation 34
Solution 10.4 BSF using Digital Transformation 35
Solution 11.1 To Design the Digtial Chebyshev IIR Filter . . . 37
Solution 12.1 Design of Ployphase Decimator 41
Solution 13.1 Periodogram Estimate of Given Discrete Sequence 44
AP 1 sinc function . 46

3

Experiment: 1

Generation of Discrete Signals

Scilab code Solution 1.1 Unit Sample Sequence

1 // Capt ion : Unit Sample Sequence
2 clear;

3 clc;

4 close;

5 L = 4; // U p p e r l i m i t
6 n = -L:L;

7 x = [zeros(1,L),1,zeros(1,L)];

8 b = gca();

9 b.y_location = ” middle ”;
10 plot2d3(’ gnn ’ ,n,x)
11 a=gce();

12 a.children (1).thickness =4;

13 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f Unit Sample
Sequence ’ , ’ n ’ , ’ x [n] ’);

Scilab code Solution 1.2 Unit Step Sequence

1 // Capt ion : Unit Step Sequence

4

2 clear;

3 clc;

4 close;

5 L = 4; // U p p e r l i m i t
6 n = -L:L;

7 x = [zeros(1,L),ones(1,L+1)];

8 a=gca();

9 a.y_location = ” middle ”;
10 plot2d3(’ gnn ’ ,n,x)
11 title(’ G raph i c a l R e p r e s e n t a t i o n o f Unit Step S i g n a l ’

)

12 xlabel(’ n ’
);

13 ylabel(’ x
[n] ’);

Scilab code Solution 1.3 Discrete Ramp Sequence

1 // Capt ion : D i s c r e t e Ramp Sequence
2 clear;

3 clc;

4 close;

5 L = 4; // U p p e r l i m i t
6 n = -L:L;

7 x = [zeros(1,L) ,0:L];

8 b = gca();

9 b.y_location = ’ middle ’ ;
10 plot2d3(’ gnn ’ ,n,x)
11 a=gce();

12 a.children (1).thickness =2;

13 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f D i s c r e t e Unit
Ramp Sequence ’ , ’ n ’ , ’ x [n] ’);

5

Scilab code Solution 1.4 Exponentially Decreasing Signal

1 // Capt ion : E x p o n e n t i a l l y D e c r e a s i n g S i g n a l
2 clear;

3 clc;

4 close;

5 a =0.5;

6 n = 0:10;

7 x = (a)^n;

8 a=gca();

9 a.x_location = ” o r i g i n ”;
10 a.y_location = ” o r i g i n ”;
11 plot2d3(’ gnn ’ ,n,x)
12 a.thickness = 2;

13 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f E x p o n e n t i a l l y
D e c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [n] ’);

Scilab code Solution 1.5 Exponentially Increasing Signal

1 // Capt ion : E x p o n e n t i a l l y I n c r e a s i n g S i g n a l
2 clear;

3 clc;

4 close;

5 a =1.5;

6 n =1:10;

7 x = (a)^n;

8 a=gca();

9 a.thickness = 2;

10 plot2d3(’ gnn ’ ,n,x)
11 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f E x p o n e n t i a l l y

I n c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [n] ’);

6

Experiment: 2

Linear and Circular
Convolution of two sequences

Scilab code Solution 2.1 Program for Linear Convolution

1 // Capt ion : Program f o r L i n e a r Convo lu t i on
2 clc;

3 clear all;

4 close ;

5 x = input(’ e n t e r x s eq ’);
6 h = input(’ e n t e r h seq ’);
7 m = length(x);

8 n = length(h);

9 // Method 1 Using D i r e c t Convo lu t i on Sum Formula
10 for i = 1:n+m-1

11 conv_sum = 0;

12 for j = 1:i

13 if (((i-j+1) <= n)&(j <= m))

14 conv_sum = conv_sum + x(j)*h(i-j+1);

15 end;

16 y(i) = conv_sum;

17 end;

18 end;

19 disp(y’, ’ Convo lu t i on Sum u s i n g D i r e c t Formula Method

7

= ’)
20 // Method 2 Using I n b u i l t Funct ion
21 f = convol(x,h)

22 disp(f, ’ Convo lu t i on Sum R e s u l t u s i n g I n b u i l t Funt ion
= ’)

23 // Method 3 Using f r e q u e n c y Domain m u l t i p l i c a t i o n
24 N = n+m-1;

25 x = [x zeros(1,N-m)];

26 h = [h zeros(1,N-n)];

27 f1 = fft(x)

28 f2 = fft(h)

29 f3 = f1.*f2; // f r e q domain m u l t i p l i c a t i o n
30 f4 = ifft(f3)

31 disp(f4, ’ Convo lu t i on Sum R e s u l t DFT − IDFT method = ’
)

32 // f 4 = r e a l (f 4)
33 subplot (3,1,1);

34 plot2d3(’ gnn ’ ,x)
35 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f Input s i g n a l x ’)

;

36 subplot (3,1,2);

37 plot2d3(’ gnn ’ ,h)
38 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f Impul se s i g n a l h

’);
39 subplot (3,1,3);

40 plot2d3(’ gnn ’ ,y)
41 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f Output s i g n a l y ’

);

42 // R e s u l t
43 // e n t e r x s eq [1 1 1 1]
44 // e n t e r h seq [1 2 3]
45 // Convo lu t i on Sum u s i n g D i r e c t Formula Method =
46 // 1 . 3 . 6 . 6 . 5 . 3 .
47 // Convo lu t i on Sum R e s u l t u s i n g I n b u i l t Funt ion =
48 // 1 . 3 . 6 . 6 . 5 . 3 .
49 // Convo lu t i on Sum R e s u l t DFT − IDFT method =
50 // 1 . 3 . 6 . 6 . 5 . 3 .

8

Scilab code Solution 2.2 Program to find the Cicrcular Convolution

1 // Capt ion : Program to f i n d the C i c r c u l a r Convo lu t i on
o f g i v e n

2 // d i s c r e t e s e q u e n c e s u s i n g Matr ix method
3

4 clear;

5 clc;

6 x1 = [2,1,2,1]; // F i r s t s equence
7 x2 = [1,2,3,4]; // Second s equence
8 m = length(x1); // l e n g t h o f f i r s t s equence
9 n = length(x2); // l e n g t h o f s econd s equence

10 //To make l e n g t h o f x1 and x2 a r e Equal
11 if (m >n)

12 for i = n+1:m

13 x2(i) = 0;

14 end

15 elseif (n>m)

16 for i = m+1:n

17 x1(i) = 0;

18 end

19 end

20 N = length(x1);

21 x3 = zeros(1,N); // x3 = C i r c u l a r c o n v o l u t i o n r e s u l t
22 a(1) = x2(1);

23 for j = 2:N

24 a(j) = x2(N-j+2);

25 end

26 for i =1:N

27 x3(1) = x3(1)+x1(i)*a(i);

28 end

29 X(1,:)=a;

30 // C a l c u l a t i o n o f c i r c u l a r c o n v o l u t i o n
31 for k = 2:N

9

32 for j =2:N

33 x2(j) = a(j-1);

34 end

35 x2(1) = a(N);

36 X(k,:)= x2;

37 for i = 1:N

38 a(i) = x2(i);

39 x3(k) = x3(k)+x1(i)*a(i);

40 end

41 end

42 disp(X, ’ C i r c u l a r Convo lu t i on Matr ix x2 [n]= ’)
43 disp(x3, ’ C i r c u l a r Convo lu t i on R e s u l t x3 [n] = ’)
44 // R e s u l t
45 // C i r c u l a r Convo lu t i on Matr ix x2 [n]=
46 //
47 // 1 . 4 . 3 . 2 .
48 // 2 . 1 . 4 . 3 .
49 // 3 . 2 . 1 . 4 .
50 // 4 . 3 . 2 . 1 .
51 //
52 // C i r c u l a r Convo lu t i on R e s u l t x3 [n] =
53 //
54 // 1 4 . 1 6 . 1 4 . 1 6 .

10

Experiment: 3

Circular convolution using FFT

Scilab code Solution 3.1 Performing Circular COnvolution Using DFT
IDFT method

1 // Capt ion : Per fo rming C i r c u l a r COnvolut ion Using DFT−
IDFT method

2 clear all;

3 clc;

4 close;

5 L = 4; // Length o f the Sequence
6 N = 4; // N −p o i n t DFT
7 x1 = [2,1,2,1];

8 x2 = [1,2,3,4];

9 // Computing DFT
10 X1 = fft(x1 ,-1);

11 X2 = fft(x2 ,-1);

12 disp(X1, ’DFT o f x1 [n] i s X1(k)= ’)
13 disp(X2, ’DFT o f x1 [n] i s X2(k)= ’)
14 // M u l t i p l i c a t i o n o f 2 DFTs
15 X3 = X1.*X2;

16 disp(X3, ’DFT o f x3 [n] i s X3(k)= ’)
17 // C i r c u l a r Convo lu t i on R e s u l t
18 x3 =abs(fft(X3 ,1))

19 disp(x3, ’ C i r c u l a r Convo lu t i on R e s u l t x3 [n]= ’)

11

20 // R e s u l t
21 // DFT o f x1 [n] i s X1(k)=
22 //
23 // 6 . 0 2 . 0
24 //
25 // DFT o f x1 [n] i s X2(k)=
26 //
27 // 1 0 . − 2 . + 2 . i − 2 . − 2 . − 2 . i
28 //
29 // DFT o f x3 [n] i s X3(k)=
30 //
31 // 6 0 . 0 − 4 . 0
32 //
33 // C i r c u l a r Convo lu t i on R e s u l t x3 [n]=
34 //
35 // 1 4 . 1 6 . 1 4 . 1 6 .

12

Experiment: 4

Linear Convolution using
Circular Convolution

Scilab code Solution 4.1 Performing Linear Convolution using Circular
Convolution

1 // Capt ion : Per fo rming L i n e a r Convo lu t i on u s i n g
C i r c u l a r Convo lu t i on

2

3 clear;

4 clc;

5 close;

6 h = [1,2,3]; // Impul se Response o f LTI System
7 x = [1,2,2,1]; // Input Response o f LTI System
8 N1 = length(x);

9 N2 = length(h);

10 N = N1+N2 -1

11 disp(N, ’ Length o f Output Response y (n) ’)
12 // Padding z e r o s to Make Length o f ’ h ’ and ’ x ’
13 // Equal to l e n g t h o f output r e s p o n s e ’ y ’
14 h1 = [h,zeros(1,N-N2)];

15 x1 = [x,zeros(1,N-N1)];

16 // Computing FFT
17 H = fft(h1 ,-1);

13

18 X = fft(x1 ,-1);

19 // M u l t i p l i c a t i o n o f 2 DFTs
20 Y = X.*H

21 // L i n e a r Convo lu t i on R e s u l t
22 y =abs(fft(Y,1))

23 disp(X, ’DFT o f i /p X(k)= ’)
24 disp(H, ’DFT o f impu l s e s equence H(k)= ’)
25 disp(Y, ’DFT o f L i n e a r F i l t e r o/p Y(k)= ’)
26 disp(y, ’ L i n e a r Convo lu t i on r e s u l t y [n]= ’)
27 // R e s u l t
28 // Length o f Output Response y (n)
29 //
30 // 6 .
31 //
32 // DFT o f i /p X(k)=
33 //
34 // 6 . − 3 . 4 64 1 0 1 6 i 0 0 0 3 . 4 64 1 0 1 6 i
35 //
36 // DFT o f impu l s e s equence H(k)=
37 //
38 // 6 . 0 . 5 − 4 . 3 3 0 1 2 7 i − 1 . 5 + 0 . 8 6 6 0 2 5 4 i

2 . − 1 . 5 − 0 . 8 66 0 2 5 4 i 0 . 5 + 4 . 3 3 0 1 2 7 i
39 //
40 // DFT o f L i n e a r F i l t e r o/p Y(k)=
41 //
42 // 3 6 . − 1 5 . − 1 . 7 3 20 5 0 8 i 0 0 0 − 1 5 .

+ 1 . 7 3 2 0 50 8 i
43 //
44 // L i n e a r Convo lu t i on r e s u l t y [n]=
45 //
46 // 1 . 4 . 9 . 1 1 . 8 . 3 .

14

Experiment: 5

Calculation of FFT and IFFT
of a sequence

Scilab code Solution 5.5 Performing FFT and IFFT of a discrete sequence

1 // Capt ion : Per fo rming FFT and IFFT o f a d i s c r e t e
s equence

2 clear;

3 clc;

4 close;

5 L = 4; // Length o f the Sequence
6 N = 4; // N −p o i n t DFT
7 x = [1,2,3,4];

8 // Computing DFT
9 X = fft(x,-1);

10 disp(X, ’FFT o f x [n] i s X(k)= ’)
11 x =abs(fft(X,1))

12 disp(x, ’ IFFT o f X(k) i s x [n]= ’)
13 // P l o t t i n g the spectrum o f D i s c r e t e Sequence
14 subplot (2,1,1)

15 a=gca();

16 a.data_bounds =[0 ,0;5 ,10];

17 plot2d3(’ gnn ’ ,0:length(x)-1,x)
18 b = gce();

15

19 b.children (1).thickness =3;

20 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f D i s c r e t e
Sequence ’ , ’ n ’ , ’ x [n] ’);

21 subplot (2,1,2)

22 a=gce();

23 a.data_bounds =[0 ,0;5 ,10];

24 plot2d3(’ gnn ’ ,0:length(X)-1,abs(X))
25 b = gce();

26 b.children (1).thickness =3;

27 xtitle(’ G raph i c a l R e p r e s e n t a t i o n o f D i s c r e t e
Spectrum ’ , ’ k ’ , ’X(k) ’);

28 // R e s u l t
29 //FFT o f x [n] i s X(k)=
30 //
31 // 1 0 . − 2 . + 2 . i − 2 . − 2 . − 2 . i
32 //
33 //IFFT o f X(k) i s x [n]=
34 //
35 // 1 . 2 . 3 . 4 .

16

Experiment: 6

Time and Frequency Response
of LTI systems

Scilab code Solution 6.1 Time and Frequency Response

1 // Capt ion : Program to g e n e r a t e and p l o t the impu l s e
r e s p o n s e and f r e q u e n c y

2 // r e s p o n s e o f a L i n e a r c o n s t a n t c o e f f i c i e n t f i r s t
o r d e r D i f f e r e n t i a l Equat ion

3 // [1] . Impul se r e s p o n s e h (t)= exp(−a∗ t) u (t) , A>0
4 // [2] . Frequency r e s p o n s e H(jw) = 1/(jw+a)
5 clear;

6 clc;

7 close;

8 // [1] . To g e n e r a t e and p l o t the impu l s e r e s p o n s e
9 a =1; // Constant c o e f f i c i e n t a =1

10 Dt = 0.005;

11 t = 0:Dt:10;

12 ht = exp(-a*t);

13 figure (1)

14 a = gca();

15 a.y_location = ” o r i g i n ”;
16 plot(t,ht);

17 xlabel(’ t ime t −−−−−−> ’);

17

18 ylabel(’ h (t) ’)
19 title(’ Impul se Repsonse o f I s t Order L i n e a r Constant

C o e f f . D i f f e r e n t i a l Equ . ’)
20 //
21 // [2] . F ind ing Frequency r e s p o n s e u s i n g Cont inuous

Time F o u r i e r Transform
22 Wmax = 2*%pi*1; // Analog Frequency = 1Hz
23 K = 4;

24 k = 0:(K/1000):K;

25 W = k*Wmax/K;

26 HW = ht* exp(-sqrt(-1)*t’*W) * Dt;

27 HW_Mag = abs(HW);

28 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from −
Wmax to Wmax

29 HW_Mag = [mtlb_fliplr(HW_Mag),HW_Mag (2:1001)];

30 [HW_Phase ,db] = phasemag(HW);

31 HW_Phase = [-mtlb_fliplr(HW_Phase),HW_Phase (2:1001)

];

32 figure (2)

33 // P l o t t i n g Magnitude Response
34 subplot (2,1,1);

35 a = gca();

36 a.y_location = ” o r i g i n ”;
37 plot(W,HW_Mag);

38 xlabel(’ Frequency i n Radians / Seconds−−−> W’);
39 ylabel(’ abs (H(jW)) ’)
40 title(’ Magnitude Response ’)
41 // P l o t t i n g Phase Reponse
42 subplot (2,1,2);

43 a = gca();

44 a.y_location = ” o r i g i n ”;
45 a.x_location = ” o r i g i n ”;
46 plot(W,HW_Phase*%pi /180);

47 xlabel(’ Frequency i n
Radians / Seconds−−−> W’);

48 ylabel(’
<H

(jW) ’)

18

49 title(’ Phase Response i n Radians ’)

19

Experiment: 7

Sampling, Verification of
Sampling and Effect of aliasing

check Appendix AP 1 for dependency:

sincnew.sce

Scilab code Solution 7.1 Sampling and Reconstruction of a Signal

1 // Capt ion : Sampl ing and R e c o n s t r u c t i o n o f a S i g n a l x
(t) = exp(−A∗ | t |)

2 // D i s c r e t e Time Sampled S i g n a l x (nT)= exp(−A∗ |nT |)
3 // F o l l o w i n g Sampl ing F r e q u e n c i e s a r e used :
4 // [1] . Fs = 1 Hz [2] . Fs = 2 Hz [3] . Fs = 4Hz [4] . Fs

=20 Hz [5] . Fs =100Hz
5 // A l i a s i n g E f f e c t : As the Sampl ing f r e q u e n c y

i n c r e a s e s a l i a s i n g e f f e c t d e c r e a s e s
6 clear;

7 clc;

8 close;

9 // Analog S i g n a l
10 A =1; // Amplitude
11 Dt = 0.005;

12 t = -2:Dt:2;

20

13 // Cont inuous Time S i g n a l
14 xa = exp(-A*abs(t));

15 // D i s c r e t e Time S i g n a l
16 Fs =input(’ Enter the Sampl ing Frequency i n Hertz ’);

// Fs = 1Hz , 2 Hz , 4 Hz , 2 0 Hz , 1 0 0 Hz
17 Ts = 1/Fs;

18 nTs = -2:Ts:2;

19 x = exp(-A*abs(nTs));

20 // Analog S i g n a l r e c o n s t r u c t i o n
21 Dt = 0.005;

22 t = -2:Dt:2;

23 Xa = x *sincnew(Fs*(ones(length(nTs) ,1)*t-nTs ’*ones

(1,length(t))));

24 // P l o t t i n g the o r i g i n a l s i g n a l and r e c o n s t r u c t e d
s i g n a l

25 subplot (2,1,1);

26 a =gca();

27 a.x_location = ” o r i g i n ”;
28 a.y_location = ” o r i g i n ”;
29 plot(t,xa);

30 xlabel(’ t i n s e c . ’);
31 ylabel(’ xa (t) ’)
32 title(’ O r i g i n a l Analog S i g n a l ’)
33 subplot (2,1,2);

34 a =gca();

35 a.x_location = ” o r i g i n ”;
36 a.y_location = ” o r i g i n ”;
37 xlabel(’ t i n s e c . ’);
38 ylabel(’ xa (t) ’)
39 title(’ R e c on s t r u c t e d S i g n a l u s i n g s i n c f u n c t i o n , Fs

= 100Hz ’);
40 plot(t,Xa);

21

Experiment: 8

Design of FIR Filters Window
Design

Scilab code Solution 8.1 Program to Design FIR Low Pass Filter

1 // Capt ion : Program to Des ign FIR Low Pass F i l t e r
2 clc;

3 close;

4 M = input(’ Enter the Odd F i l t e r Length = ’);
// F i l t e r l e n g t h

5 Wc = input(’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’);
// D i g i t a l C u t o f f f r e q u e n c y

6 Tuo = (M-1)/2 // Center Value
7 for n = 1:M

8 if (n == Tuo+1)

9 hd(n) = Wc/%pi;

10 else

11 hd(n) = sin(Wc*((n-1)-Tuo))/(((n-1)-Tuo)*%pi)

;

12 end

13 end

14 // Rec tangu l a r Window
15 for n = 1:M

16 W(n) = 1;

22

17 end

18 // Windowing F i t l e r C o e f f i c i e n t s
19 h = hd.*W;

20 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’)
21

22 [hzm ,fr]=frmag(h ,256);

23 hzm_dB = 20* log10(hzm)./max(hzm);

24 subplot (2,1,1)

25 plot (2*fr,hzm)

26 xlabel(’ Normal i zed D i g i t a l Frequency W’);
27 ylabel(’ Magnitude ’);
28 title(’ Frequency Response 0 f FIR LPF u s i n g

Rec tangu l a r window ’)
29 xgrid (1)

30 subplot (2,1,2)

31 plot (2*fr,hzm_dB)

32 xlabel(’ Normal i zed D i g i t a l Frequency W’);
33 ylabel(’ Magnitude i n dB ’);
34 title(’ Frequency Response 0 f FIR LPF u s i n g

Rec tangu l a r window ’)
35 xgrid (1)

36 // R e s u l t
37 // Enter the Odd F i l t e r Length = 7
38 // Enter the D i g i t a l C u t o f f f r e q u e n c y = %pi /2
39 //
40 // F i l t e r C o e f f i c i e n t s a r e
41 //
42 // − 0 . 1 0 61 0 3 3
43 // 1 . 9 4 9D−17 = 0 . 0
44 // 0 . 3 1 8 3 0 99
45 // 0 . 5
46 // 0 . 3 1 8 3 0 99
47 // 1 . 9 4 9D−17 = 0 . 0
48 // − 0 . 1 0 61 0 3 3

23

Scilab code Solution 8.2 rogram to Design FIR High Pass Filter

1 // Capt ion : Program to Des ign FIR High Pass F i l t e r
2 clear;

3 clc;

4 close;

5 M = input(’ Enter the Odd F i l t e r Length = ’);
// F i l t e r l e n g t h

6 Wc = input(’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’);
// D i g i t a l C u t o f f f r e q u e n c y

7 Tuo = (M-1)/2 // Center Value
8 for n = 1:M

9 if (n == Tuo+1)

10 hd(n) = 1-Wc/%pi;

11 else

12 hd(n) = (sin(%pi*((n-1)-Tuo)) -sin(Wc*((n-1)-

Tuo)))/(((n-1)-Tuo)*%pi);

13 end

14 end

15 // Rec tangu l a r Window
16 for n = 1:M

17 W(n) = 1;

18 end

19 // Windowing F i t l e r C o e f f i c i e n t s
20 h = hd.*W;

21 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’)
22 [hzm ,fr]=frmag(h ,256);

23 hzm_dB = 20* log10(hzm)./max(hzm);

24 subplot (2,1,1)

25 plot (2*fr,hzm)

26 xlabel(’ Normal i zed D i g i t a l Frequency W’);
27 ylabel(’ Magnitude ’);
28 title(’ Frequency Response 0 f FIR HPF u s i n g

Rec tangu l a r window ’)
29 xgrid (1)

30 subplot (2,1,2)

31 plot (2*fr,hzm_dB)

32 xlabel(’ Normal i zed D i g i t a l Frequency W’);

24

33 ylabel(’ Magnitude i n dB ’);
34 title(’ Frequency Response 0 f FIR HPF u s i n g

Rec tangu l a r window ’)
35 xgrid (1)

36 // R e s u l t
37 // Enter the Odd F i l t e r Length = 5
38 // Enter the D i g i t a l C u t o f f f r e q u e n c y = %pi /4
39 // F i l t e r C o e f f i c i e n t s a r e
40 //
41 // − 0 . 1 5 91 5 4 9
42 // − 0 . 2 2 50 7 9 1
43 // 0 . 7 5
44 // − 0 . 2 2 50 7 9 1
45 // − 0 . 1 5 91 5 4 9

Scilab code Solution 8.3 Program to Design FIR Band Pass Filter

1 // Capt ion : Program to Des ign FIR Band Pass F i l t e r
2 clear;

3 clc;

4 close;

5 M = input(’ Enter the Odd F i l t e r Length = ’);
// F i l t e r l e n g t h

6 // D i g i t a l C u t o f f f r e q u e n c y [Lower Cuto f f , Upper
C u t o f f]

7 Wc = input(’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’);
8 Wc2 = Wc(2)

9 Wc1 = Wc(1)

10 Tuo = (M-1)/2 // Center Value
11 hd = zeros(1,M);

12 W = zeros(1,M);

13 for n = 1:11

14 if (n == Tuo+1)

15 hd(n) = (Wc2 -Wc1)/%pi;

16 else

25

17 n

18 hd(n) = (sin(Wc2*((n-1)-Tuo)) -sin(Wc1 *((n-1)-

Tuo)))/(((n-1)-Tuo)*%pi);

19 end

20 if(abs(hd(n)) <(0.00001))

21 hd(n)=0;

22 end

23 end

24 hd;

25 // Rec tangu l a r Window
26 for n = 1:M

27 W(n) = 1;

28 end

29 // Windowing F i t l e r C o e f f i c i e n t s
30 h = hd.*W;

31 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’)
32 [hzm ,fr]=frmag(h ,256);

33 hzm_dB = 20* log10(hzm)./max(hzm);

34 subplot (2,1,1)

35 plot (2*fr,hzm)

36 xlabel(’ Normal i zed D i g i t a l Frequency W’);
37 ylabel(’ Magnitude ’);
38 title(’ Frequency Response 0 f FIR BPF u s i n g

Rec tangu l a r window ’)
39 xgrid (1)

40 subplot (2,1,2)

41 plot (2*fr,hzm_dB)

42 xlabel(’ Normal i zed D i g i t a l Frequency W’);
43 ylabel(’ Magnitude i n dB ’);
44 title(’ Frequency Response 0 f FIR BPF u s i n g

Rec tangu l a r window ’)
45 xgrid (1)

46 // R e s u l t
47 // Enter the Odd F i l t e r Length = 11
48 // Enter the D i g i t a l C u t o f f f r e q u e n c y = [%pi /4 ,3∗%pi

/ 4]
49 // F i l t e r C o e f f i c i e n t s a r e
50 // 0 . 0 . 0 . − 0 . 3 1 83 0 9 9 0 . 0 . 5 0 . −

26

0 . 3 18 3 0 9 9 0 . 0 . 0 .

Scilab code Solution 8.4 Program to Design FIR Band Reject Filter

1 // Capt ion : Program to Des ign FIR Band R e j e c t F i l t e r
2 clear ;

3 clc;

4 close;

5 M = input(’ Enter the Odd F i l t e r Length = ’);
// F i l t e r l e n g t h

6 // D i g i t a l C u t o f f f r e q u e n c y [Lower Cuto f f , Upper
C u t o f f]

7 Wc = input(’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’);
8 Wc2 = Wc(2)

9 Wc1 = Wc(1)

10 Tuo = (M-1)/2 // Center Value
11 hd = zeros(1,M);

12 W = zeros(1,M);

13 for n = 1:M

14 if (n == Tuo+1)

15 hd(n) = 1-((Wc2 -Wc1)/%pi);

16 else

17 hd(n)=(sin(%pi*((n-1)-Tuo))-sin(Wc2*((n-1)-Tuo))+

sin(Wc1*((n-1)-Tuo)))/(((n-1)-Tuo)*%pi);

18 end

19 if(abs(hd(n)) <(0.00001))

20 hd(n)=0;

21 end

22 end

23

24 // Rec tangu l a r Window
25 for n = 1:M

26 W(n) = 1;

27 end

28 // Windowing F i t l e r C o e f f i c i e n t s

27

29 h = hd.*W;

30 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’)
31 [hzm ,fr]=frmag(h ,256);

32 hzm_dB = 20* log10(hzm)./max(hzm);

33 subplot (2,1,1)

34 plot (2*fr,hzm)

35 xlabel(’ Normal i zed D i g i t a l Frequency W’);
36 ylabel(’ Magnitude ’);
37 title(’ Frequency Response 0 f FIR BSF u s i n g

Rec tangu l a r window ’)
38 xgrid (1)

39 subplot (2,1,2)

40 plot (2*fr,hzm_dB)

41 xlabel(’ Normal i zed D i g i t a l Frequency W’);
42 ylabel(’ Magnitude i n dB ’);
43 title(’ Frequency Response 0 f FIR BSF u s i n g

Rec tangu l a r window ’)
44 xgrid (1)

45 // R e s u l t
46 // Enter the Odd F i l t e r Length = 11
47 // Enter the D i g i t a l C u t o f f f r e q u e n c y =[%pi /3 ,2∗%pi

/ 3]
48 // F i l t e r C o e f f i c i e n t s a r e
49 // column 1 to 9
50 // 0 . − 0 . 1 37 8 3 2 2 0 . 0 . 2 7 56 6 4 4 0 .

0 . 6 6 66 6 6 7 0 . 0 . 2 7 5 66 4 4 0 .
51 // column 10 to 11
52 // − 0 . 1 3 78 3 2 2 0 .

28

Experiment: 9

Design of FIR Filters
Frequency Sampling

Scilab code Solution 9.1 Design of FIR LPF Filter using Frequecny Sam-
pling Technique

1 // Cpat ion : Des ign o f FIR LPF F i l t e r u s i n g Frequecny
Sampl ing Technique

2

3 clear;

4 clc;

5 close;

6 M =15;

7 Hr = [1,1,1,1,0.4,0,0,0];

8 for k =1: length(Hr)

9 G(k)=((-1)^(k-1))*Hr(k);

10 end

11 h = zeros(1,M);

12 U = (M-1)/2

13 for n = 1:M

14 h1 = 0;

15 for k = 2:U+1

16 h1 =G(k)*cos ((2* %pi/M)*(k-1) *((n-1) +(1/2)))+h1;

17 end

29

18 h(n) = (1/M)* (G(1) +2*h1);

19 end

20 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e h (n)= ’)
21 [hzm ,fr]=frmag(h ,256);

22 hzm_dB = 20* log10(hzm)./max(hzm);

23 subplot (2,1,1)

24 plot (2*fr,hzm)

25 a=gca();

26 xlabel(’ Normal i zed D i g i t a l Frequency W’);
27 ylabel(’ Magnitude ’);
28 title(’ Frequency Response 0 f FIR LPF u s i n g Frequency

Sampl ing Technique with M = 15 with C u t o f f
Frequency = 0 . 4 6 6 ’)

29 xgrid (2)

30 subplot (2,1,2)

31 plot (2*fr,hzm_dB)

32 a=gca();

33 xlabel(’ Normal i zed D i g i t a l Frequency W’);
34 ylabel(’ Magnitude i n dB ’);
35 title(’ Frequency Response 0 f FIR LPF u s i n g Frequency

Sampl ing Technique with M = 15 with C u t o f f
Frequency = 0 . 4 6 6 ’)

36 xgrid (2)

37 // R e s u l t
38 // F i l t e r C o e f f i c i e n t s a r e h (n)=
39 // column 1 to 7
40 //
41 // −0.0141289 −0.0019453 0 . 0 4 0 . 0 1 2 2 3 45

−0.0913880 −0.0180899 0 . 3 1 3 31 7 6
42 //
43 // column 8 to 14
44 //
45 // 0 . 5 2 0 . 3 1 3 3 1 7 6 − 0 . 0 18 0 8 9 9 − 0 . 0 91 3 8 8 0

0 . 0 1 22 3 4 5 0 . 0 4 − 0 . 0 0 19 4 5 3
46 //
47 // column 15
48 //
49 // − 0 . 0 1 41 2 8 9

30

31

Experiment: 10

Design of IIR Filters-
Butterworth

Scilab code Solution 10.1 Digital IIR First Order Butterworth LPF Fil-
ter

1 // Capt ion : To d e s i g n a d i g i t a l I IR F i r s t Order
Butte rworth LPF F i l t e r

2 // Using B i l i n e a r Trans f o rmat i on
3 clear all;

4 clc;

5 close;

6 s = poly(0, ’ s ’);
7 Omegac = 0.2* %pi; // C u t o f f f r e q u e n c y
8 H = Omegac /(s+Omegac); // Analog f i r s t o r d e r

Butte rworth f i l t e r t r a n f e r f u n c t i o n
9 T =1; // Sampl ing p e r i o d T = 1 Second

10 z = poly(0, ’ z ’);
11 Hz = horner(H,(2/T)*((z-1)/(z+1))) // B i l i n e a r

Trans f o rmat i on
12 HW =frmag(Hz(2),Hz(3) ,512); // Frequency r e s p o n s e

f o r 512 p o i n t s
13 W = 0:%pi /511: %pi;

14 a=gca();

32

15 a.thickness = 1;

16 plot(W/%pi ,HW , ’ r ’)
17 a.foreground = 1;

18 a.font_style = 9;

19 xgrid (1)

20 xtitle(’ Magnitude Response o f S i n g l e p o l e LPF F i l t e r
C u t o f f f r e q u e n c y = 0 . 2∗ p i ’ , ’ Normal i zed D i g i t a l

Frequency−−−> ’ , ’ Magnitude ’);

Scilab code Solution 10.2 HPF Using Digital Filter Transformation

1 // Capt ion : To d e s i g n F i r s t Order Butte rworth Low
Pass F i l t e r and c o v e r t i t i n t o

2 // HPF Using D i g i t a l F i l t e r Trans f o rmat i on
3 clear all;

4 clc;

5 close;

6 s = poly(0, ’ s ’);
7 Omegac = 0.2* %pi; // F i l t e r c u t o f f f r e q u e n c y
8 H = Omegac /(s+Omegac); // F i r s t o r d e r Butte rworth IIR

f i l t e r
9 T =1; // Sampl ing p e r i o d T = 1 Second

10 z = poly(0, ’ z ’);
11 Hz_LPF = horner(H,(2/T)*((z-1)/(z+1))); // B i l i n e a r

Trans f o rmat i on
12 alpha = -(cos((Omegac+Omegac)/2))/(cos((Omegac -

Omegac)/2));

13 HZ_HPF=horner(Hz_LPF ,-(z+alpha)/(1+ alpha*z))//LPF to
HPF d i g i t a l t r a n s f o r m a t i o n

14 HW =frmag(HZ_HPF (2),HZ_HPF (3) ,512); // Frequency
r e s p o n s e f o r 512 p o i n t s

15 W = 0:%pi /511: %pi;

16 a=gca();

17 a.thickness = 1;

18 plot(W/%pi ,HW , ’ r ’)

33

19 a.foreground = 1;

20 a.font_style = 9;

21 xgrid (1)

22 xtitle(’ Magnitude Response o f S i n g l e p o l e HPF F i l t e r
C u t o f f f r e q u e n c y = 0 . 2∗ p i ’ , ’ Normal i zed D i g i t a l

Frequency W/ pi−−−> ’ , ’ Magnitude ’);

Scilab code Solution 10.3 BPF using Digital Transformation

1 // / Capt ion : To Des ign a D i g i t a l I IR Butte rworth LPF
F i l t e r from Analog IIR

2 // Butte rworth F i l t e r and LPF to BPF u s i n g D i g i t a l
Trans f o rmat i on

3 clear all;

4 clc;

5 close;

6 omegaP = 0.2* %pi; // F i l t e r c u t o f f f r e q u e n c y
7 omegaL = (1/5)*%pi; // Lower C u t o f f f r e q u e n c y f o r

BSF
8 omegaU = (3/5)*%pi; // Upper C u t o f f f r e q u e n c y f o r

BSF
9 z=poly(0, ’ z ’);

10 H_LPF = (0.245) *(1+(z^-1))/(1 -0.509*(z^-1)); //
B i l i n e a r t r a n s f o r m a t i o n

11 alpha = (cos((omegaU+omegaL)/2)/cos((omegaU -omegaL)

/2));// parameter ’ a lpha ’
12 // parameter ’ k ’
13 k = (cos((omegaU - omegaL)/2)/sin((omegaU - omegaL)

/2))*tan(omegaP /2);

14 NUM =-((z^2) -((2* alpha*k/(k+1))*z)+((k-1)/(k+1)));

15 DEN = (1 -((2* alpha*k/(k+1))*z)+(((k-1)/(k+1))*(z^2))

);

16 HZ_BPF=horner(H_LPF ,NUM/DEN);//LPF to BPF c o n v e r s i o n
u s i n g d i g i t a l t r a n s f o r m a t i o n

17 disp(HZ_BPF , ’ D i g i t a l BPF IIR F i l t e r H(Z)= ’);

34

18 HW =frmag(HZ_BPF (2),HZ_BPF (3) ,512);// f r e q u e n c y
r e s p o n s e

19 W = 0:%pi /511: %pi;

20 a=gca();

21 a.thickness = 1;

22 plot(W/%pi ,HW, ’ r ’)
23 a.foreground = 1;

24 a.font_style = 9;

25 xgrid (1)

26 xtitle(’ Magnitude Response o f BPF F i l t e r c u t o f f
f r e q u e n c y [0 . 2 , 0 . 6] ’ , ’ Normal i zed D i g i t a l
Frequency−−−> ’ , ’ Magnitude ’);

Scilab code Solution 10.4 BSF using Digital Transformation

1 // Capt ion : To Des ign a D i g i t a l I IR Butte rworth LPF
F i l t e r from Analog IIR

2 // Butte rworth F i l t e r and LPF to BSF u s i n g D i g i t a l
Trans f o rmat i on

3 clear all;

4 clc;

5 close;

6 omegaP = 0.2* %pi; // F i l t e r c u t o f f f r e q u e n c y
7 omegaL = (1/5)*%pi; // Lower C u t o f f f r e q u e n c y f o r

BSF
8 omegaU = (3/5)*%pi; // Upper C u t o f f f r e q u e n c y f o r

BSF
9 z=poly(0, ’ z ’);

10 H_LPF = (0.245) *(1+(z^-1))/(1 -0.509*(z^-1))//
B i l i n e a r t r a n s f o r m a t i o n

11 alpha = (cos((omegaU+omegaL)/2)/cos((omegaU -omegaL)

/2)); // parameter ’ a lpha ’
12 k = tan((omegaU - omegaL)/2)*tan(omegaP /2); //

parameter ’ k ’
13 NUM =((z^2) -((2* alpha /(1+k))*z)+((1-k)/(1+k))); //

35

Numerator
14 DEN = (1 -((2* alpha /(1+k))*z)+(((1 -k)/(1+k))*(z^2)));

// Denominator
15 HZ_BSF=horner(H_LPF ,NUM/DEN); //LPF to BSF

c o n v e r s i o n u s i n g d i g i t a l t r a n s f o r m a t i o n
16 HW =frmag(HZ_BSF (2),HZ_BSF (3) ,512); // f r e q u e n c y

r e s p o n s e f o r 512 p o i n t s
17 W = 0:%pi /511: %pi;

18 a=gca();

19 a.thickness = 1;

20 plot(W/%pi ,HW, ’ r ’)
21 a.foreground = 1;

22 a.font_style = 9;

23 xgrid (1)

24 xtitle(’ Magnitude Response o f BSF F i l t e r c u t o f f f r e q
[0 . 2 , 0 . 6] ’ , ’ Normal i zed D i g i t a l Frequency−−−> ’ , ’

Magnitude ’);

36

Experiment: 11

Design of IIR Filters
Chebyshev

Scilab code Solution 11.1 To Design the Digtial Chebyshev IIR Filter

1 // Program To Des ign the D i g t i a l Chebyshev IIR F i l t e r
2 clear;

3 clc;

4 close;

5 Wp = input(’ Enter the D i g i t a l Pass Band Edge
Frequency ’);

6 Ws = input(’ Enter the D i g i t a l Stop Band Edge
Frequency ’);

7 T = input(’ Sampl ing I n t e r v a l ’)
8 OmegaP = (2/T)*tan(Wp/2)

9 OmegaS = (2/T)*tan(Ws/2)

10 Delta1 = input(’ Enter the Pass Band Ripp l e ’);
11 Delta2 = input(’ Enter the Stop Band Ripp l e ’);
12 Delta = sqrt (((1/ Delta2)^2) -1)

13 Epsilon = sqrt (((1/ Delta1)^2) -1)

14 N = (acosh(Delta/Epsilon))/(acosh(OmegaS/OmegaP))

15 N = ceil(N)

16 OmegaC = OmegaP /((((1/ Delta1)^2) -1)^(1/(2*N)))

17 [pols ,gn] = zpch1(N,Epsilon ,OmegaP)

37

18 Hs = poly(gn, ’ s ’ , ’ c o e f f ’)/real(poly(pols , ’ s ’))
19 z = poly(0, ’ z ’);
20 Hz = horner(Hs ,((2/T)*((z-1)/(z+1))))

21 HW =frmag(Hz(2),Hz(3) ,512); // Frequency r e s p o n s e
f o r 512 p o i n t s

22 W = 0:%pi /511: %pi;

23 a=gca();

24 a.thickness = 1;

25 plot(W/%pi ,abs(HW), ’ r ’)
26 a.foreground = 1;

27 a.font_style = 9;

28 xgrid (1)

29 xtitle(’ Magnitude Response o f Chebyshev LPF F i l t e r ’ ,
’ Normal i zed D i g i t a l Frequency−−−> ’ , ’ Magnitude i n
dB ’);

30 //RESULT
31 // Enter the D i g i t a l Pass Band Edge Frequency 0 . 2∗%pi
32 // Enter the D i g i t a l Stop Band Edge Frequency 0 . 6∗%pi
33 // Sampl ing I n t e r v a l 1
34 // T =
35 //
36 // 1 .
37 // OmegaP =
38 //
39 // 0 . 6 4 9 8 3 94
40 // OmegaS =
41 //
42 // 2 . 7 5 2 7 6 38
43 // Enter the Pass Band Ripp l e 0 . 8
44 // Enter the Stop Band Ripp l e 0 . 2
45 // De l ta =
46 //
47 // 4 . 8 9 8 9 7 95
48 // E p s i l o n =
49 //
50 // 0 . 7 5
51 // N =
52 //

38

53 // 1 . 2 0 7 9 5 48
54 // N =
55 //
56 // 2 .
57 // OmegaC =
58 //
59 // 0 . 7 5 0 3 6 99
60 // gn =
61 //
62 // 0 . 2 8 1 5 2 75
63 // p o l s =
64 //
65 // − 0 . 2 6 52 9 5 8 + 0 . 5 3 0 5 9 1 6 i − 0 . 2 6 52 9 5 8 −

0 . 5 3 05 9 1 6 i
66 // Hs =
67 //
68 // 0 . 2 8 1 5 2 75
69 // −−−−−−−−−−−−−−−−−−−−−−−−−
70 // 2
71 // 0 . 3 5 1 9 0 94 + 0 . 5 3 05 9 1 6 s + s
72 // Hz =
73 //
74 // 2
75 // 0 . 2 8 1 5 2 75 + 0 . 5 6 30 5 5 0 z + 0 . 2 8 15 2 7 5 z
76 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 // 2
78 // 3 . 2 9 0 7 2 61 − 7 . 2 96 1 8 1 3 z + 5 . 4 13 0 9 2 6 z
79 //−−>0.5∗0.5629
80 // ans =
81 //
82 // 0 . 2 8 1 4 5
83 //
84 //−−>Hz (2)= Hz (2) /5 . 4130926
85 // Hz =
86 //
87 // 2
88 // 0 . 0 5 2 0 0 86 + 0 . 1 0 40 1 7 2 z + 0 . 0 5 20 0 8 6 z
89 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39

90 // 2
91 // 3 . 2 9 0 7 2 61 − 7 . 2 96 1 8 1 3 z + 5 . 4 13 0 9 2 6 z
92 //
93 //−−>Hz (3) = Hz (3) /5 . 41 30926
94 // Hz =
95 //
96 // 2
97 // 0 . 0 5 2 0 0 86 + 0 . 1 0 40 1 7 2 z + 0 . 0 5 20 0 8 6 z
98 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 // 2

100 // 0 . 6 0 7 9 1 98 − 1 . 3 4 78 7 6 7 z + z
101 //

40

Experiment: 12

Decimation by polyphase
decomposition

Scilab code Solution 12.1 Design of Ployphase Decimator

1 // Capt ion : Dec imat ion by 2 , F i l t e r Length = 30
2 // C u t o f f Frequency Wc = %pi /2
3 // Pass band Edge f r e q u e n c y fp = 0 . 2 5 and a Stop band

edge f r e q u e n c y f s = 0 . 3 1
4 // Choose the number o f c o s i n e f u n c t i o n s and c r e a t e

a dense g r i d
5 // i n [0 , 0 . 2 5] and [0 . 3 1 , 0 . 5]
6 // magnitude f o r pa s s band = 1 & stop band = 0 (i . e)

[1 0]
7 // Weight ing f u n c t i o n =[2 1]
8 clear;

9 clc;

10 close;

11 M = 30; // F i l t e r Length
12 D = 2; // Dec imat ion Facto r = 2
13 Wc = %pi/2; // C u t o f f Frequency
14 Wp = Wc/(2* %pi); // Passband Edge Frequency
15 Ws = 0.31; // Stopband Edge Frequency
16 hn=eqfir(M,[0 Wp;Ws .5] ,[1 0],[2 1]);

41

17 disp(hn, ’ The LPF F i l t e r C o e f f i c i e n t s a r e : ’)
18 // Obta in ing Po lyphase F i l t e r C o e f f i c i e n t s from hn
19 p = zeros(D,M/D);

20 for k = 1:D

21 for n = 1:(length(hn)/D)

22 p(k,n) = hn(D*(n-1)+k);

23 end

24 end

25 disp(p, ’ The Po lyphase Decimator f o r D =2 a r e : ’)
26 // R e s u l t
27 //The LPF F i l t e r C o e f f i c i e n t s a r e :
28 // column 1 to 7
29 // 0 . 0 0 6 0 2 03 − 0 . 0 12 8 0 3 7 − 0 . 0 02 8 5 3 4 0 . 0 1 3 6 6 8 7

− 0 . 0 04 6 7 6 1 − 0 . 0 19 7 0 0 2 0 . 01 5 9 9 1 5
30

31 // column 8 to 14
32 // 0 . 0 2 1 3 8 11 − 0 . 0 34 9 8 0 8 − 0 . 0 15 6 2 5 1 0 . 0 6 4 0 2 3 0

− 0 . 0 07 3 6 0 0 − 0 . 1 18 7 3 2 5 0 . 09 8 0 5 2 2
33 // column 15 to 21
34 // 0 . 4 9 2 2 4 76 0 . 4 9 2 24 7 6 0 . 0 98 0 5 2 2 − 0 . 1 18 7 3 2 5

− 0 . 0 07 3 6 0 0 0 . 06 4 0 2 3 0 − 0 . 0 15 6 2 5 1
35 // column 22 to 28
36 //− 0 . 0 34 9 8 0 8 0 . 0 2 1 3 8 1 1 0 . 0 1 5 9 9 15 − 0 . 0 1 97 0 0 2

− 0 . 0 04 6 7 6 1 0 . 0 1 3 6 6 8 7 − 0 . 0 02 8 5 3 4
37

38 // column 29 to 30
39 //− 0 . 0 12 8 0 3 7 0 . 0 0 6 0 2 0 3
40

41 //The Polyphase Decimator f o r D =2 a r e :
42 // column 1 to 7
43 // 0 . 0 0 6 0 2 03 − 0 . 0 02 8 5 3 4 − 0 . 0 04 6 7 6 1 0 . 0 1 5 9 9 1 5

− 0 . 0 3 49 8 0 8 0 . 06 4 0 2 3 0 − 0 . 1 18 7 3 2 5
44 //− 0 . 0 12 8 0 3 7 0 . 0 1 3 6 6 8 7 − 0 . 0 19 7 0 0 2 0 . 0 2 1 3 8 1 1

− 0 . 0 15 6 2 5 1 − 0 . 0 07 3 6 0 0 0 . 0 9 8 0 5 2 2
45

46 // column 8 to 14
47 // 0 . 4 9 2 2 4 76 0 . 0 9 8 05 2 2 − 0 . 0 07 3 6 0 0 − 0 . 0 15 6 2 5 1

0 . 0 21 3 8 1 1 − 0 . 0 19 7 0 0 2 0 . 0 1 3 6 6 8 7

42

48 // 0 . 4 9 2 2 4 76 − 0 . 1 18 7 3 2 5 0 . 0 6 4 0 2 3 0 − 0 . 0 34 9 8 0 8
0 . 0 1 59 9 1 5 − 0 . 0 0 46 7 6 1 − 0 . 0 0 28 5 3 4

49 // column 15
50 //− 0 . 0 1 28 0 3 7
51 // 0 . 0 0 6 0 2 03

43

Experiment: 13

Periodogram based Spectral
Estimation

Scilab code Solution 13.1 Periodogram Estimate of Given Discrete Se-
quence

1 // Capt ion : Per iodogram Est imate o f Given D i s c r e t e
Sequence

2 //x (n) ={1 , 0 , 2 , 0 , 3 , 1 , 0 , 2}
3 // u s i n g DFT
4 clear;

5 clc;

6 close;

7 N =8; //8−p o i n t DFT
8 x = [1,0,2,0,3,1,0,2]; // g i v e n d i s c r e t e s equence
9 X = dft(x,-1); //8−p o i n t DFT o f g i v e n d i s c r e t e

s equence
10 Pxx = (1/N)*(abs(X).^2); // Per idogram Est imate
11 disp(X, ’DFT o f x (n) i s X(k)= ’)
12 disp(Pxx , ’ Per idogram o f x (n) i s Pxx (k/N)= ’)
13 figure (1)

14 a = gca();

15 a.data_bounds =[0 ,0;8 ,11];

16 plot2d3(’ gnn ’ ,[1:N],Pxx)

44

17 a.foreground = 5;

18 a.font_color = 5;

19 a.font_style = 5;

20 title(’ Per idogram Est imate ’)
21 xlabel(’ D i s c r e t e Frequency V a r i a b l e K −−−−−> ’)
22 ylabel(’ Per iodogram Pxx (k /N) −−−−> ’)
23 // R e s u l t
24 //DFT o f x (n) i s X(k)=
25 //
26 // 9 .
27 // − 1 . 2 9 28 9 3 2 + 0 . 1 2 1 3 2 0 3 i
28 // 2 . + i
29 // − 2 . 7 0 71 0 6 8 + 4 . 1 2 1 3 2 0 3 i
30 // 3 . − 3 . 6 7 4D−16 i
31 // − 2 . 7 0 71 0 6 8 − 4 . 1 21 3 2 0 3 i
32 // 2 . − i
33 // − 1 . 2 9 28 9 3 2 − 0 . 1 21 3 2 0 3 i
34 //
35 // Per idogram o f x (n) i s Pxx (k/N)=
36 //
37 // 1 0 . 1 2 5
38 // 0 . 2 1 0 7 8 64
39 // 0 . 6 2 5
40 // 3 . 0 3 9 2 1 36
41 // 1 . 1 2 5
42 // 3 . 0 3 9 2 1 36
43 // 0 . 6 2 5
44 // 0 . 2 1 0 7 8 64

45

Appendix

Scilab code AP 11 function [y]= sincnew(x)

2 i=find(x==0);

3 x(i)= 1; // don ’ t need t h i s i s /0 warning i s
o f f

4 y = sin(%pi*x)./(%pi*x);

5 y(i) = 1;

6 endfunction

sinc function

46

	
	Generation of Discrete Signals
	Linear and Circular Convolution of two sequences
	Circular convolution using FFT
	Linear Convolution using Circular Convolution
	Calculation of FFT and IFFT of a sequence
	Time and Frequency Response of LTI systems
	Sampling, Verification of Sampling and Effect of aliasing
	Design of FIR Filters Window Design
	Design of FIR Filters Frequency Sampling
	Design of IIR Filters- Butterworth
	Design of IIR Filters Chebyshev
	Decimation by polyphase decomposition
	Periodogram based Spectral Estimation

