Scilab Manual for
Digital Signal Processing
by Prof R.Senthilkumar, Assistant Professor
Electronics Engineering
Institute of Road and Transport Technology?

Solutions provided by
Mr. R.Senthilkumar- Assistant Professor
Electronics Engineering
Institute of Road and Transport Technology

February 12, 2026

Funded by a grant from the National Mission on Education through ICT,
http://spoken-tutorial.org/NMEICT-Intro. This Scilab Manual and Scilab codes
written in it can be downloaded from the ”"Migrated Labs” section at the website
http://scilab.in

Contents

List of Scilab Solutions

1

2

8

9

Generation of Discrete Signals

Linear and Circular Convolution of two sequences
Circular convolution using FFT

Linear Convolution using Circular Convolution
Calculation of FFT and IFFT of a sequence

Time and Frequency Response of LTI systems
Sampling, Verification of Sampling and Effect of aliasing
Design of FIR Filters Window Design

Design of FIR Filters Frequency Sampling

10 Design of IIR Filters- Butterworth

11 Design of IIR Filters Chebyshev

12 Decimation by polyphase decomposition

13 Periodogram based Spectral Estimation

11

13

15

17

20

22

29

32

37

41

44

List of Experiments

Solution 1.1
Solution 1.2
Solution 1.3
Solution 1.4
Solution 1.5
Solution 2.1
Solution 2.2
Solution 3.1

Solution 4.1

Solution 5.5
Solution 6.1
Solution 7.1
Solution 8.1
Solution 8.2
Solution 8.3
Solution 8.4
Solution 9.1

Solution 10.1
Solution 10.2
Solution 10.3
Solution 10.4
Solution 11.1
Solution 12.1
Solution 13.1
AP 1

Unit Sample Sequence
Unit Step Sequence
Discrete Ramp Sequence
Exponentially Decreasing Signal
Exponentially Increasing Signal
Program for Linear Convolution
Program to find the Cicrcular Convolution
Performing Circular COnvolution Using DFT IDF'T
method oo
Performing Linear Convolution using Circular Con-
volution
Performing FFT and IFFT of a discrete sequence
Time and Frequency Response
Sampling and Reconstruction of a Signal
Program to Design FIR Low Pass Filter
rogram to Design FIR High Pass Filter
Program to Design FIR Band Pass Filter
Program to Design FIR Band Reject Filter
Design of FIR LPF Filter using Frequecny Sam-
pling Technique
Digital IIR First Order Butterworth LPF Filter
HPF Using Digital Filter Transformation
BPF using Digital Transformation
BSF using Digital Transformation
To Design the Digtial Chebyshev IIR Filter
Design of Ployphase Decimator
Periodogram Estimate of Given Discrete Sequence
sinc functiono

O ~1 O D U

11

13
15
17
20
22
23
25
27

29
32
33
34
35
37
41
44
46

© 00 J O U i W N

— = = =
W N = O

Experiment: 1

Generation of Discrete Signals

Scilab code Solution 1.1 Unit Sample Sequence

//Caption: Unit Sample Sequence

clear;

clc;

close;

L = 4; //Upperlimit

n = -L:L;

x = [zeros(1,L),1,zeros(1,L)];
b = gca();

b.y_location = "middle”;
plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =4;
xtitle(’Graphical Representation of Unit Sample

Y)

Sequence’,’'n’, ’x[n]) ;

Scilab code Solution 1.2 Unit Step Sequence

//Caption: Unit Step Sequence

— =
= O © 00 O O i W N

—_
\)

—_
w

© 00 J O U i W N

— = = =
w N = O

clear;

clc;

close;

L
n
X

4, //Upperlimit
-L:L;
[zeros(1,L),ones(1,L+1)];

a=gca();

a.y_location = "middle”;

plot2d3(’gnn’,n,x)

title(’Graphical Representation of Unit Step Signal’

)

xlabel (’ n’
)

ylabel (’
[n] ")

Scilab code Solution 1.3 Discrete Ramp Sequence

//Caption: Discrete Ramp Sequence

clear;

clc;

close;

L = 4; //Upperlimit

n = -L:L;

x = [zeros(1,L),0:L];

b = gca();

b.y_location = ’'middle’;

plot2d3(’gnn’,n,x)

a=gce () ;

a.children (1) .thickness =2;

xtitle(’Graphical Representation of Discrete Unit

? Y

Ramp Sequence’,’n’,’x[n]’);

© 00 J O U i W N

— = = =
w N = O

© 00 J O U i W N+~

— =
= O

Scilab code Solution 1.4 Exponentially Decreasing Signal

//Caption: Exponentially Decreasing Signal

clear;

clc;

close;

a =0.5;

n = 0:10;

X (a)"n;

a=gca();

a.x_location “origin”;

a.y_location “origin”;

plot2d3(’gnn’,n,x)

a.thickness = 2;

xtitle(’Graphical Representation of Exponentially
Decreasing Signal’,’'n’,’x[n]) ;

Scilab code Solution 1.5 Exponentially Increasing Signal

//Caption: Exponentially Increasing Signal

clear;

clc;

close;

a =1.5;

n =1:10;

x = (a)’"n;

a=gca();

a.thickness = 2;

plot2d3(’gnn’,n,x)

xtitle (" Graphical Representation of Exponentially
Increasing Signal’,’'n’,’ ’x[n]’);

© 00 N O U b W N

el e T e T S e e e e T
© 00 J O O = W N —= O

Experiment: 2

Linear and Circular
Convolution of two sequences

Scilab code Solution 2.1 Program for Linear Convolution

//Caption:Program for Linear Convolution
clc;
clear all;

close ;

x = input(’enter x seq’);
h = input(’enter h seq’);
m = length(x);

n = length(h);

//Method 1 Using Direct Convolution Sum Formula
for i = 1:n+m-1
conv_sum = O;
for j = 1:1
if (((i-j+1) <= n)&(j <= m))

conv_sum = conv_sum + x(j)*xh(i-j+1);
end ;
y(i) = conv_sum;
end ;
end ;
disp(y’, "Convolution Sum using Direct Formula Method

20
21
22

23
24
25
26
27
28
29
30
31

32
33
34
35

36
37
38

39
40
41

42
43
44
45
46
47
48
49
50

=)

//Method 2 Using Inbuilt Function

f = convol(x,h)

disp(f, Convolution Sum Result using Inbuilt Funtion
=)

//Method 3 Using frequency Domain multiplication

N = n+m-1;

x = [x zeros(1,N-m)];

h [h zeros(1,N-n)];

f1 = fft(x)

f2 = fft(h)

f3 = f1.*xf2; // freq domain multiplication

f4 ifft (£3)

disp (f4, "Convolution Sum Result DFT — IDFT method =’
)

//f4 = real(f4)

subplot (3,1,1);

plot2d3(’gnn’,x)

xtitle ("’ Graphical Representation of Input signal x7)

subplot (3,1,2);

plot2d3(’'gnn’,h)

xtitle (' Graphical Representation of Impulse signal h
)5

subplot (3,1,3);

plot2d3(’gnn’,y)

xtitle (' Graphical Representation of Output signal y’
)

// Result

//enter x seq [1 1 1 1]

//enter h seq [1 2 3]

// Convolution Sum using Direct Formula Method =

/) 1. 3. 6. 6. 5. 3.

// Convolution Sum Result using Inbuilt Funtion =

/) 1. 3. 6. 6. 5. 3.

// Convolution Sum Result DFT — IDFT method =

/) 1. 3. 6. 6. 5. 3.

© 00 J O U = W N

W W N DN DNDNDDNDDIDNDNDDN N H = = s =) e
= O © 00 1 O UL WNEFEFO©WOWO Uik w4~ O

Scilab code Solution 2.2 Program to find the Cicrcular Convolution

//Caption: Program to find the Cicrcular Convolution
of given
//discrete sequences using Matrix method

clear;

clc;

x1 = [2,1,2,1]; //First sequence

x2 [1,2,3,4]; //Second sequence

m = length(x1); //length of first sequence
n = length(x2); //length of second sequence
//To make length of x1 and x2 are Equal

if (m >n)
for i = n+l:m
x2(i) = 0;
end
elseif (n>m)
for i = m+1l:n
x1(i) = 0;
end
end
N = length(x1l);
x3 = zeros(1,N); //x3 = Circular convolution result

a(l) = x2(1);
for j = 2:N
a(j) = x2(N-j+2);

end
for i =1:N
x3(1) = x3(1)+x1(i)*a(i);
end
X(1,:)=a;

// Calculation of circular convolution
for k = 2:N

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

for j =2:N
x2(j) = a(j-1);
end
x2(1) = a(N);
X(k,:)= x2;
for i = 1:N
a(i) = x2(i);
x3(k) = x3(k)+x1(i)*a(i);
end
end
disp(X, ’Circular Convolution Matrix x2[n]=")

disp(x3, "Circular Convolution Result x3[n

// Result

// Circular Convolution Matrix x2[n]=

//
//
//
//
//
//
//
//
//

=~ W N =

Circular Convolution Result x3[n]

14.

W N

16.

MO = O

14.

s W N

16.

10

© 00 J O O = W N

e S U = T = S S Gy S R Y
© 00 J O U i W N = O

Experiment: 3

Circular convolution using FFT

Scilab code Solution 3.1 Performing Circular COnvolution Using DFT
IDFT method

//Caption: Performing Circular COnvolution Using DFT-
IDFT method

clear all;

clc;

close;

L = 4; //Length of the Sequence

N =4; // N —point DFT

x1 = [2,1,2,1];

x2 = [1,2,3,4];

//Computing DFT

X1 = fft(x1,-1);

X2 = fft(x2,-1);

disp (X1, 'DFT of x1[n] is X1(k)=")

disp (X2, 'DFT of x1[n] is X2(k)=")

//Multiplication of 2 DFTs

X3 = X1.%X2;

disp (X3, 'DFT of x3[n] is X3(k)=")

//Circular Convolution Result

x3 =abs (fft(X3,1))

disp(x3,’Circular Convolution Result x3[n]=")

11

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//Result

0

2.

- 2.

2.1

// DFT of xI[n] is X1(k)=
//

// 6. 0 2. 0
//

// DFT of x1[n] is X2(k)=
//

// 10, — 2. + 2.0 -
//

// DFT of x3[n] is X3(k)=
//

// 60. 0 — 4.

//

// Circular Convolution Result x3[n]=
//

// 14. 16. 14,

16.

1

12

© 00 J O Ut i W N

T e T e T o S = S G SRt
N O U = W N = O

Experiment: 4

Linear Convolution using
Circular Convolution

Scilab code Solution 4.1 Performing Linear Convolution using Circular
Convolution

//Caption: Performing Linear Convolution using
Circular Convolution

clear;

clc;

close;

h = [1,2,3]; //Impulse Response of LTI System
x = [1,2,2,1]; //Input Response of LTI System
N1 = length(x);

N2 = length(h);

N = N1+N2-1

disp (N, ’Length of Output Response y(n)’)
//Padding zeros to Make Length of ’'h’ and ’'x’
//Equal to length of output response 'y’
hi1 = [h,zeros(1,N-N2)1];

x1 = [x,zeros(1,N-N1)];

//Computing FFT

H = fft(hl,-1);

13

18 X = fft(x1,-1);

19 //Multiplication of 2 DFTs

20 Y = X.xH

21 //Linear Convolution Result

22 y =abs(fft(Y,1))

23 disp (X, 'DFT of i/p X(k)=")

24 disp(H, 'DFT of impulse sequence H(k)=")
25 disp (Y, 'DFT of Linear Filter o/p Y(k)=")
26 disp(y, 'Linear Convolution result y[n]=")
27 //Result

28 // Length of Output Response y(n)

29 //
30 // 6.

31 /)
32 // DFT of i/p X(k)=

33 /)

34 // 6. — 3.46410161 0 0 0 3.46410161

35 //

36 // DFT of impulse sequence H(k)=

37 //

38 // 6. 0.5 — 4.3301271 — 1.5 + 0.86602541
2. — 1.5 — 0.86602541 0.5 + 4.3301271

39 //
40 // DFT of Linear Filter o/p Y(k)=

a /)

42 /) 36. — 15. — 1.73205081i 0o 0 0 - 15.
+ 1.7320508i

43 //

44 /) Linear Convolution result y[n]=

5 /)
46 // 1. 1. 9. 11. 8. 3.

14

© 00 N O U = W N

I e T e T o T = S SO SO
O O Ut i W N+~ O

Experiment: 5

Calculation of FFT and IFFT
of a sequence

Scilab code Solution 5.5 Performing FFT and IFF'T of a discrete sequence

//Caption: Performing FFT and IFFT of a discrete
sequence

clear;

clc;

close;

L = 4; //Length of the Sequence

N 4, // N —point DFT

X [1,2,3,4];

//Computing DFT

X = fft(x,-1);

disp (X, 'FFT of x[n] is X(k)=")

x =abs(fft(X,1))

disp(x, 'IFFT of X(k) is x[n]=")

//Plotting the spectrum of Discrete Sequence

subplot(2,1,1)

a=gca();

a.data_bounds=[0,0;5,10];

plot2d3(’gnn’,0:1length(x)-1,x)

b = gce();

15

19
20

21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

b.children (1) .thickness =3;

xtitle (' Graphical Representation of
Sequence’, 'n’, ’x[n]) ;

subplot(2,1,2)

a=gce () ;

a.data_bounds=[0,0;5,10];

plot2d3(’'gnn’,0:1length(X)-1,abs (X))

b = gce();

b.children (1) .thickness =3;

xtitle(’Graphical Representation of
Spectrum ’, 'k 7, 'X(k) ") ;

// Result

//FFT of x[n] is X(k)=

//

/) 10, — 2.+ 2.i — 2. — 2. —
//

//IFFT of X(k) is x[n]=

//

/) 1. 2. 3. 4.

Discrete

Discrete

16

© 00 J O U = W

10

12
13
14
15
16
17

Experiment: 6

Time and Frequency Response
of LTI systems

Scilab code Solution 6.1 Time and Frequency Response

//Caption: Program to generate and plot the impulse
response and frequency

//response of a Linear constant coefficient first
order Differential Equation

//[1].Impulse response h(t)= exp(—axt)u(t), A>0

//[2]. Frequency response H(jw) = 1/(jw+a)

clear;

clc;

close;

//[1]. To generate and plot the impulse response
a =1; //Constant coefficient a =1

Dt = 0.005;

t = 0:Dt:10;
ht = exp(-ax*t);

figure (1)

a = gca();

a.y_location = "origin”;
plot (t,ht);

xlabel (’'time t ——— >7);

17

18
19

20
21

22
23
24
25
26
27
28

29
30
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

ylabel ('h(t) ")
title(’Impulse Repsonse of Ist Order Linear Constant
Coeff. Differential Equ.’)

//

//12]. Finding Frequency response using Continuous
Time Fourier Transform

Wmax = 2*%pix*1; //Analog Frequency = 1Hz

K = 4,;

k = 0:(K/1000) :K;

W = kxWmax/K;

HW = ht*x exp(-sqrt(-1)*t’*W) * Dt;

HW_Mag = abs (HW) ;

W = [-mtlb_fliplr(Ww), W(2:1001)1; // Omega from —
Wmax to Wmax

HW_Mag = [mtlb_fliplr (HW_Mag) ,HW_Mag(2:1001)];

[HW_Phase ,db] = phasemag (HW);

HW_Phase = [-mtlb_fliplr (HW_Phase) ,HW_Phase (2:1001)
1

figure (2)

//Plotting Magnitude Response

subplot(2,1,1);

a = gca();

a.y_location = "origin”;

plot (W,HW_Mag);

xlabel (’Frequency in Radians/Seconds——> W’);

ylabel (’abs (H(jW)) ")

title(’Magnitude Response’)

//Plotting Phase Reponse

subplot(2,1,2);

a = gca();

a.y_location = "origin”;

a.x_location = "origin’;

plot (W,HW_Phasex*%pi/180) ;

xlabel (’ Frequency in
Radians/Seconds——> W’) ;

ylabel ('’

<H

(JW)

18

49 title(’Phase Response in Radians’)

19

© 00 N O

10

12

Experiment: 7

Sampling, Verification of
Sampling and Effect of aliasing

check Appendix AP 1 for dependency:

sincnew.sce

Scilab code Solution 7.1 Sampling and Reconstruction of a Signal

//Caption: Sampling and Reconstruction of a Signal x
(t) = exp(—Ax|t])

//Discrete Time Sampled Signal x(nT)= exp(—Ax|nT|)

//Following Sampling Frequencies are used:

//[1].Fs =1 Hz [2].Fs = 2 Hz [3].Fs = 4Hz [4].Fs
=20 Hz [5].Fs =100Hz

// Aliasing Effect: As the Sampling frequency
increases aliasing effect decreases

clear;

clc;

close;

// Analog Signal

A =1, //Amplitude

Dt = 0.005;

t = -2:Dt:2;

20

13
14
15
16

17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

//Continuous Time Signal

xa = exp(-Axabs(t));

//Discrete Time Signal

Fs =input (’Enter the Sampling Frequency in Hertz) ;
//Fs = 1Hz,2Hz,4Hz,20Hz,100Hz

Ts = 1/Fs;

nTs = -2:Ts:2;

x = exp(-A*xabs(nTs));

// Analog Signal reconstruction

Dt = 0.005;
t = -2:Dt:2;
Xa = x *sincnew(Fs*(ones(length(nTs) ,1)*t-nTs’*ones

(1,length(t))));
//Plotting the original signal and reconstructed

signal
subplot (2,1,1);
a =gca();
a.x_location = "origin’;
a.y_location = "origin”;

plot (t,xa);

xlabel(’t in sec.’);

ylabel ('xa(t))

title(’Original Analog Signal’)

subplot(2,1,2);

a =gca();

a.x_location “origin”;

a.y_location “origin”;

xlabel(’t in sec.’);

ylabel ('xa(t)’)

title(’Reconstructed Signal using sinc function , Fs
= 100Hz") ;

plot (t,Xa);

21

t W N =

© 00 N O

10

12
13
14
15
16

Experiment: 8

Design of FIR Filters Window
Design

Scilab code Solution 8.1 Program to Design FIR Low Pass Filter

//Caption: Program to Design FIR Low Pass Filter
clc;
close;
M = input(’Enter the Odd Filter Length =");
//Filter length
Wc = input(’Enter the Digital Cutoff frequency =7);
//Digital Cutoff frequency

Tuo = (M-1)/2 //Center Value
for n = 1:M
if (n == Tuo+1)
hd(n) = Wc/%pi;
else
hd(n) = sin(Wc*x((n-1)-Tuo))/(((n-1)-Tuo)*%pi)
end
end

//Rectangular Window
for n = 1:M
W(n) = 1;

22

17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48

end

//Windowing Fitler Coefficients

h = hd.*W;

disp(h, "Filter Coefficients are’)

[hzm,fr]=frmag(h,256) ;

hzm_dB = 20*1ogl10(hzm) ./max (hzm) ;

subplot(2,1,1)

plot (2*fr,hzm)

xlabel ("Normalized Digital Frequency W’);

ylabel ('Magnitude ') ;

title(’Frequency Response 0f FIR LPF using
Rectangular window ')

xgrid (1)

subplot (2,1,2)

plot (2*xfr,hzm_dB)

xlabel ("Normalized Digital Frequency W’);

ylabel ('Magnitude in dB’);

title(’Frequency Response 0f FIR LPF using
Rectangular window ’)

xgrid (1)

// Result

//Enter the Odd Filter Length = 7

//Enter the Digital Cutoff frequency = %pi/2

//

// Filter Coefficients are
//

// — 0.1061033

// 1.949D—-17 = 0.0

// 0.3183099

// 0.5

/] 0.3183099

// 1.949D—17 = 0.0

// — 0.1061033

23

D QL = W N =

© 00

10

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32

Scilab code Solution 8.2 rogram to Design FIR High Pass Filter

//Caption: Program to Design FIR High Pass Filter

clear;

clc;

close;

M = input (’Enter the Odd Filter Length =");

//Filter length

Wc = input (’Enter the Digital Cutoff frequency =7);

//Digital Cutoff frequency

Tuo = (M-1)/2 //Center Value
for n = 1:M
if (n == Tuo+1)
hd(n) = 1-Wc/%pi;
else

hd(n) = (sin(%pi*((n-1)-Tuo)) -sin(Wc*((n-1)-
Tuo)))/(((n-1)-Tuo)*%pi);
end
end
//Rectangular Window
for n = 1:M
W(n) = 1;
end
//Windowing Fitler Coefficients
h = hd.x*xW;
disp(h, "Filter Coefficients are’)
[hzm,fr]=frmag(h,256) ;
hzm_dB = 20*x1ogl10(hzm) ./max (hzm) ;
subplot(2,1,1)
plot (2%fr,hzm)
xlabel ("Normalized Digital Frequency W’);
ylabel ("Magnitude ') ;
title(’Frequency Response 0f FIR HPF using
Rectangular window ")
xgrid (1)
subplot(2,1,2)
plot (2*xfr,hzm_dB)
xlabel ('Normalized Digital Frequency W’);

24

33
34

35
36
37
38
39
40
41
42
43
44
45

(=] QL = W N =

© 00

10

12
13
14
15
16

ylabel ('Magnitude in dB’);

title (’'Frequency Response 0f FIR HPF using
Rectangular window ")

xgrid (1)

//Result

//Enter the Odd Filter Length = 5

//Enter the Digital Cutoff frequency = %pi/4

// Filter Coefficients are

// — 0.1591549
// — 0.2250791
/] 0.75

/) — 0.2250791
/) — 0.1591549

Scilab code Solution 8.3 Program to Design FIR Band Pass Filter

//Caption: Program to Design FIR Band Pass Filter
clear;
clc;
close;
M = input (' Enter the Odd Filter Length =");
// Filter length
//Digital Cutoff frequency [Lower Cutoff, Upper
Cutoff |
Wc = input(’Enter the Digital Cutoff frequency =7);
Wec2 = Wc(2)
Wcil We (1)
Tuo (M-1) /2 //Center Value
hd = zeros(1,M);
W = zeros(1,M);
for n = 1:11

if (n == Tuo+1)
hd(n) = (Wc2-Wcl)/%pi;
else

25

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44

45
46
47
48

49
50

n

hd(n) = (sin(Wc2*((n-1)-Tuo)) -sin(Wclx*x((n-1)-

Tuo)))/(((n-1)-Tuo) *%pi);
end
if (abs (hd(n)) <(0.00001))
hd (n)=0;
end
end
hd;
//Rectangular Window
for n = 1:M
W(n) = 1;
end
//Windowing Fitler Coefficients
h = hd.*W;
disp(h, "Filter Coefficients are’)
[hzm,fr]=frmag(h,256) ;
hzm_dB = 20%*1ogl10 (hzm) ./max (hzm) ;
subplot(2,1,1)
plot (2xfr ,hzm)
xlabel ("Normalized Digital Frequency W’);
ylabel ('Magnitude ') ;
title ('Frequency Response 0f FIR BPF using
Rectangular window ")
xgrid (1)
subplot(2,1,2)
plot (2*fr ,hzm_dB)
xlabel ('Normalized Digital Frequency W’);
ylabel ("Magnitude in dB’);
title(’Frequency Response 0f FIR BPF using
Rectangular window ’)

xgrid (1)

// Result

//Enter the Odd Filter Length = 11

//Enter the Digital Cutoff frequency = [%pi/4,3%%pi
/4]

// Filter Coefficients are

// 0. 0. 0. — 0.3183099 0. 0.5

26

D U W N+~

© 00

10

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28

0.3183099 0. 0. 0.

Scilab code Solution 8.4 Program to Design FIR Band Reject Filter

//Caption: Program to Design FIR Band Reject Filter

clear ;

clc;

close;

M = input(’Enter the Odd Filter Length =");

//Filter length

//Digital Cutoff frequency [Lower Cutoff, Upper
Cutoff |

Wc = input(’Enter the Digital Cutoff frequency =7);

Wc2 = Wc(2)
Wecl = We (1)
Tuo = (M-1)/2 //Center Value

hd = zeros(1,M);
W = zeros(1,M);
for n = 1:M

if (n == Tuo+1)
hd(n) = 1-((Wc2-Wcl1)/%pi);
else

hd(n)=(sin(%pi*((n-1)-Tuo))-sin(Wc2*((n-1)-Tuo))+
sin(We1*((n-1)-Tuo)))/(((n-1)-Tuo) *%pi);
end
if (abs (hd(n)) <(0.00001))
hd (n)=0;
end
end

//Rectangular Window
for n = 1:M
W(n) = 1;
end
//Windowing Fitler Coefficients

27

29
30
31
32
33
34
35
36
37

38
39
40
41
42
43

44
45
46
47

48
49
50

o1
52

h = hd.x*xW;

disp(h, "Filter Coefficients are’)

[hzm,fr]=frmag(h,256) ;

hzm_dB = 20x1ogl10(hzm) ./max (hzm) ;

subplot(2,1,1)

plot (2*xfr ,hzm)

xlabel ("Normalized Digital Frequency W’);

ylabel ('Magnitude ') ;

title(’Frequency Response 0f FIR BSF using
Rectangular window ’)

xgrid (1)

subplot(2,1,2)

plot (2%xfr ,hzm_dB)

xlabel ("Normalized Digital Frequency W’);

ylabel ("Magnitude in dB7);

title(’Frequency Response 0f FIR BSF using
Rectangular window ')

xgrid (1)

// Result

//Enter the Odd Filter Length = 11

//Enter the Digital Cutoff frequency =[%pi/3,2*x%pi

/3]
// Filter Coefficients are
//column 1 to 9

// 0. — 0.1378322 0. 0.2756644
0.6666667 0. 0.2756644 0.

//column 10 to 11

/] — 0.1378322 0.

28

© 00 J O Ut i W N

e e T e T o S = S S G SRt
N O U = W N = O

Experiment: 9

Design of FIR Filters
Frequency Sampling

Scilab code Solution 9.1 Design of FIR LPF Filter using Frequecny Sam-
pling Technique

//Cpation: Design of FIR LPF Filter using Frequecny
Sampling Technique

clear;
clc;
close;
M =15;
Hr = [1,1,1,1,0.4,0,0,0];
for k =1:1length (Hr)
G(k)=((-1)"(k-1))*Hr (k) ;
end
h zeros (1,M) ;
U (M-1)/2
for n = 1:M
hi = 0;
for k = 2:U+1
hl1 =G(k)*cos ((2*x%pi/M)*(k-1)*((n-1)+(1/2)))+h1;
end

29

18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37
38
39
40
41

42
43
44
45

46
47
48
49

h(n) = (1/M)*x (G(1)+2xhl);

end

disp(h, 'Filter Coefficients are h(n)=")

[hzm,fr]=frmag(h,256) ;

hzm_dB = 20x1ogl10(hzm) ./max (hzm) ;

subplot(2,1,1)

plot (2*%fr,hzm)

a=gca();

xlabel ("Normalized Digital Frequency W’);

ylabel ("Magnitude ') ;

title(’Frequency Response 0f FIR LPF using Frequency
Sampling Technique with M = 15 with Cutoff
Frequency = 0.466 ")

xgrid (2)

subplot (2,1,2)

plot (2xfr,hzm_dB)

a=gca();

xlabel ('Normalized Digital Frequency W’);

ylabel ("Magnitude in dB’);

title(’Frequency Response 0f FIR LPF using Frequency
Sampling Technique with M = 15 with Cutoff
Frequency = 0.466 ")

xgrid (2)

// Result

//Filter Coefficients are h(n)=

//column 1 to 7

//

// —0.0141289 —0.0019453 0.04 0.0122345
—0.0913880 —0.0180899 0.3133176

//

//column 8 to 14

//

//0.52 0.3133176 — 0.0180899 — 0.0913880
0.0122345 0.04 — 0.0019453

//

//column 15

//

/) — 0.0141289

30

31

CO N O Ut i W N

10
11

12

13
14

Experiment: 10

Design of IIR Filters-
Butterworth

Scilab code Solution 10.1 Digital IIR First Order Butterworth LPF Fil-
ter

//Caption: To design a digital IIR First Order
Butterworth LPF Filter

//Using Bilinear Transformation

clear all;

clc;

close;

s = poly(0,’s’);

Omegac = 0.2*%pi; // Cutoff frequency

H = Omegac/(s+0Omegac); //Analog first order
Butterworth filter tranfer function

T =1;//Sampling period T = 1 Second

z = poly (0, ’z’);

Hz = horner (H, (2/T)*((z-1)/(z+1))) //Bilinear
Transformation

HW =frmag(Hz(2),Hz(3),512); //Frequency response
for 512 points

W = 0:%pi/b11:%pi;

a=gca();

32

15
16
17
18
19
20

CO N O Ut i W N

10
11

12

13

14

15

16

17
18

a.thickness = 1;
plot (W/%pi,HW,’
a.foreground =
a.font_style
xgrid (1)
xtitle ("Magnitude Response of Single pole LPF Filter
Cutoff frequency = 0.2xpi’, Normalized Digital
Frequency——>", "Magnitude ’) ;

)

)

© =

)

Scilab code Solution 10.2 HPF Using Digital Filter Transformation

//Caption: To design First Order Butterworth Low
Pass Filter and covert it into

// HPF Using Digital Filter Transformation

clear all;

clc;

close;

s = poly(0,’s’);

Omegac = 0.2*%pi; //Filter cutoff frequency

H = Omegac/(s+0Omegac); //First order Butterworth IIR
filter

T =1;//Sampling period T = 1 Second

z = poly (0, 'z");

Hz_LPF = horner(H,(2/T)*((z-1)/(z+1))); //Bilinear
Transformation

alpha = -(cos((Omegac+0megac)/2))/(cos((Omegac-
Omegac)/2));

HZ_HPF=horner (Hz_LPF,-(z+alpha)/(1+alphax*z))//LPF to
HPF digital transformation

HW =frmag(HZ_HPF(2),HZ_HPF(3),512); //Frequency
response for 512 points

W = 0:%pi/511:%pi;

a=gca();

a.thickness = 1;

plot (W/%pi,HW, 't)

33

19
20
21
22

N O U = W

10

11

12
13

14
15

16

17

a.foreground = 1;
a.font_style 9;
xgrid (1)
xtitle ("Magnitude Response of Single pole HPF Filter
Cutoff frequency = 0.2%xpi’, "Normalized Digital
Frequency W/pi——>", Magnitude ') ;

Scilab code Solution 10.3 BPF using Digital Transformation

///Caption:To Design a Digital IIR Butterworth LPF
Filter from Analog IIR
//Butterworth Filter and LPF to BPF using Digital

Transformation

clear all;

clc;

close;

omegaP = 0.2*%pi; //Filter cutoff frequency

omegal = (1/5)*%pi; //Lower Cutoff frequency for
BSF

omegalU = (3/5)*%pi; //Upper Cutoff frequency for
BSF

z=poly (0, ’z");

H_LPF = (0.245)*(1+(2z"-1))/(1-0.509%(z"-1)); //
Bilinear transformation

alpha = (cos((omegaU+omegal)/2)/cos((omegaU-omegal)
/2));//parameter ’alpha’

//parameter 'k’

k = (cos((omegaU - omegal)/2)/sin((omegalU - omegal)
/2))*tan (omegaP/2) ;

NUM =-((z72) -((2*alpha*xk/(k+1))*z)+((k-1)/(k+1)));

DEN = (1-((2*alpha*k/(k+1))*z)+(((k-1)/(k+1))*(z"2))
)

HZ_BPF=horner (H_LPF ,NUM/DEN); //LPF to BPF conversion

using digital transformation
disp (HZ_BPF, 'Digital BPF IIR Filter H(Z)= ");

34

18

19
20
21
22
23
24
25
26

N O Ot =~ W

10

11

12

13

HW =frmag(HZ_BPF (2) ,HZ_BPF(3) ,512);//frequency
response

W = 0:%pi/5b11:%pi;

a=gca();

a.thickness = 1;

plot (W/%pi,HW,’

a.foreground =

a.font_style

xgrid (1)

xtitle ("Magnitude Response of BPF Filter cutoff
frequency [0.2,0.6] ", Normalized Digital
Frequency——>’, ’Magnitude ’) ;

)

b

© = o=

)

Scilab code Solution 10.4 BSF using Digital Transformation

//Caption:To Design a Digital IIR Butterworth LPF
Filter from Analog IIR
//Butterworth Filter and LPF to BSF using Digital

Transformation

clear all;

clc;

close;

omegaP = 0.2x%%pi; // Filter cutoff frequency

omegal = (1/5)*%pi; //Lower Cutoff frequency for
BSF

omegalU = (3/5)*%pi; //Upper Cutoff frequency for
BSF

z=poly (0, ’z");

H_LPF = (0.245)*(1+(2z7-1))/(1-0.509%(z"-1))//
Bilinear transformation

alpha = (cos((omegaU+omegal)/2)/cos((omegaU-omegal)
/2)); //parameter ’alpha’

k = tan((omegaU - omegal)/2)*tan(omegaP/2); //
parameter 'k’

NUM =((z"2) -((2%alpha/(1+k))*z)+((1-k)/(1+k))); //

35

14

15

16

17
18
19
20
21
22
23
24

Numerator
DEN = (1-((2%alpha/(1+k))*z)+(((1-k)/(1+k))*(z"2)));
//Denominator
HZ_BSF=horner (H_LPF ,NUM/DEN); //LPF to BSF
conversion using digital transformation
HW =frmag(HZ_BSF(2),HZ_BSF(3),512); //frequency
response for 512 points
W = 0:%pi/5b11:%pi;
a=gca();
a.thickness = 1;
plot (W/%pi ,HW, 'r ")
a.foreground = 1;
a.font_style 9
xgrid (1)
xtitle ("Magnitude Response of BSF Filter cutoff freq
[0.2,0.6] 7, Normalized Digital Frequency——>","’
Magnitude ") ;

)

36

D U W N =

© 00

10

12
13
14
15
16
17

Experiment: 11

Design of I1IR Filters
Chebyshev

Scilab code Solution 11.1 To Design the Digtial Chebyshev IIR Filter

//Program To Design the Digtial Chebyshev IIR Filter

clear;

clc;

close;

Wp = input(’Enter the Digital Pass Band Edge
Frequency ’) ;

Ws = input(’Enter the Digital Stop Band Edge
Frequency) ;

T = input(’Sampling Interval ’)

OmegaP = (2/T)*tan(Wp/2)

OmegaS = (2/T)*tan(Ws/2)

Deltal = input(’Enter the Pass Band Ripple’);

Delta?2 input ("Enter the Stop Band Ripple’);

Delta = sqrt(((1/Delta2)"2)-1)

Epsilon = sqrt (((1/Deltal) ~2)-1)

N = (acosh(Delta/Epsilon))/(acosh(OmegaS/0OmegaP))

N = ceil(N)

OmegaC = OmegaP/((((1/Deltal)"2)-1)"(1/(2*N)))

[pols,gn] = zpchl(N,Epsilon,OmegaP)

37

18
19
20
21

22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

Hs = poly(gn,’s’, coeff’)/real(poly(pols,’s’))

z = poly(0,’z’);

Hz = horner (Hs, ((2/T)*((z-1)/(z+1))))

HW =frmag(Hz(2),Hz(3),512); //Frequency response
for 512 points

W = 0:%pi/511:%pi;

a=gca();

a.thickness = 1;

plot (W/%pi,abs(HW), ')
a.foreground = 1;
a.font_style = 9;

xgrid (1)

xtitle ("Magnitude Response of Chebyshev LPF Filter ',
"Normalized Digital Frequency——>’, Magnitude in
dB7) ;

//RESULT

//Enter the Digital Pass Band Edge Frequency 0.2x%%pi

//Enter the Digital Stop Band Edge Frequency 0.6x% %pi

//Sampling Interval 1

/] T =

//

// 1.

// OmegaP =

//

// 0.6498394
// OmegaS =

//

// 2.7527638
//Enter the Pass Band Ripple 0.8
//Enter the Stop Band Ripple 0.2

// Delta =

//

// 4.8989795
// Epsilon =
//

// 0.75

/N =

//

38

53
54
55
56
o7
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

// 1.2079548
/] N =

//

// 2.

// OmegaC =

//

// 0.7503699

// gn =

/] 0.2815275
// pols =

/] — 0.2652958
0.5305916 i

// Hs =

+ 0.5305916 1

// 0.2815275

— 0.2652958 —

// 0.3519094
/] Hz =

// 0.2815275

2

+ 0.5305916s + s

2

+ 0.5630550z + 0.28152752z

//

//
// 3.2907261

/] ——>0.5%0.5629

// ans =

//
// 0.28145

//

//—>Hz(2)= Hz(2

/] Hz =

//

//

// 0.0520086

//

2

— 7.2961813z + 5.4130926z

) /5.4130926

2

+ 0.1040172z 4+ 0.0520086z

39

%0 // 2
o1 // 3.2907261 — 7.2961813z + 5.4130926%

2
03 //——>Hz(3) = Hz(3)/5.4130926

94 // Hz =

9% //

9% // 2
97 // 0.0520086 + 0.1040172z 4+ 0.0520086z
9% //
9 // 2
100 // 0.6079198 — 1.34787677 + 7

101 //

40

o Ot

© 00

10

12
13
14
15
16

Experiment: 12

Decimation by polyphase
decomposition

Scilab code Solution 12.1 Design of Ployphase Decimator

//Caption: Decimation by 2, Filter Length = 30

//Cutoff Frequency Wec = %pi/2

//Pass band Edge frequency fp = 0.25 and a Stop band

edge frequency fs = 0.31

// Choose the number of cosine functions and create
a dense grid

// in [0,0.25] and [0.31,0.5]

//magnitude for pass band = 1 & stop band = 0 (i.e)

[1 0]
//Weighting function =[2 1]
clear;
clc;
close;
M = 30; //Filter Length

D 2; //Decimation Factor = 2

We = %pi/2; //Cutoff Frequency

Wp Wec/(2x%pi); //Passband Edge Frequency
Ws 0.31; //Stopband Edge Frequency
hn=eqfir (M, [0 Wp;Ws .5],[1 01,[2 11);

41

17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33
34

35
36

37
38
39
40
41
42
43

44

45

46
47

disp (hn, 'The LPF Filter Coefficients are:’)
//Obtaining Polyphase Filter Coefficients from hn
p = zeros(D,M/D);
for k = 1:D
for n = 1:(length(hn)/D)
p(k,n) = hn(D*(n-1)+k);
end
end
disp(p, 'The Polyphase Decimator for D =2 are:’)
//Result
//The LPF Filter Coefficients are:
//column 1 to 7
//0.0060203 — 0.0128037 — 0.0028534 0.0136687
— 0.0046761 — 0.0197002 0.0159915

//column 8 to 14

//0.0213811 — 0.0349808 — 0.0156251 0.0640230
— 0.0073600 — 0.1187325 0.0980522

//column 15 to 21

//0.4922476 0.4922476 0.0980522 — 0.1187325
— 0.0073600 0.0640230 — 0.0156251

//column 22 to 28

//— 0.0349808 0.0213811 0.0159915 — 0.0197002

— 0.0046761 0.0136687 — 0.0028534

//column 29 to 30
//— 0.0128037 0.0060203

//The Polyphase Decimator for D =2 are:
//column 1 to 7

//0.0060203 — 0.0028534 — 0.0046761 0.0159915
— 0.0349808 0.0640230 — 0.1187325
//— 0.0128037 0.0136687 — 0.0197002 0.0213811
— 0.0156251 — 0.0073600 0.0980522

//column 8 to 14
//0.4922476 0.0980522 — 0.0073600 — 0.0156251
0.0213811 — 0.0197002 0.0136687

42

48

49
50
o1

//0.4922476

0.0159915

//column 15
//— 0.0128037

//

0.0060203

— 0.1187325

— 0.0046761

0.0640230 — 0.0349808
— 0.0028534

43

© 00 J O Ut i W N

10
11
12
13
14
15
16

Experiment: 13

Periodogram based Spectral

Estimation

Scilab code Solution 13.1 Periodogram Estimate of Given Discrete Se-

quence

//Caption: Periodogram Estimate of Given Discrete

Sequence
//x(n) ={1,0,2,0,3,1,0,2}
//using DFT
clear;
clc;
close;
N =8; //8—point DFT
X
X

sequence

Pxx = (1/N)x(abs(X)."2); //Peridogram Estimate

disp (X, 'DFT of x(n)is X(k)=
disp (Pxx, 'Peridogram of x(n)

figure (1)

a = gca();

a.data_bounds =[0,0;8,11]
plot2d3(’gnn’,[1:N],Pxx)

b

44

)

(1,0,2,0,3,1,0,2]; //given discrete sequence
dft(x,-1); //8—point DFT of given discrete

is Pxx(k/N)=")

17 a.foreground = 5;

18 a.font_color = 5;

19 a.font_style = 5;

20 title(’Peridogram Estimate)

21 xlabel(’Discrete Frequency Variable K ————
22 ylabel (’Periodogram Pxx (k /N) ———>")

23 //Result

24 //DFT of x(n)is X(k)=

25 //

2% // 9.

27 // — 1.2928932 + 0.12132031i
28 // 2. + i

29 // — 2.7071068 + 4.12132031
30 // 3. — 3.674D-16i

31 // — 2.7071068 — 4.12132031i
32 // 2. — i

33 // — 1.2928932 — 0.12132031i
34 /)

35 // Peridogram of x(n) is Pxx(k/N)=
36 //

37 /) 10.125

38 /) 0.2107864

39 // 0.625

0 /) 3.0392136

41 /) 1.125

12 /) 3.0392136

43 /) 0.625

Ty 0.2107864

45

Appendix

Scilab code APl function [y]l=sincnew(x)
i=find (x==0) ;

x(i)= 1; // don’t need this is /0 warning is
off

y = sin(%hpix*x) ./ (hpix*x);

y(i) = 1;

endfunction

sinc function

46

	
	Generation of Discrete Signals
	Linear and Circular Convolution of two sequences
	Circular convolution using FFT
	Linear Convolution using Circular Convolution
	Calculation of FFT and IFFT of a sequence
	Time and Frequency Response of LTI systems
	Sampling, Verification of Sampling and Effect of aliasing
	Design of FIR Filters Window Design
	Design of FIR Filters Frequency Sampling
	Design of IIR Filters- Butterworth
	Design of IIR Filters Chebyshev
	Decimation by polyphase decomposition
	Periodogram based Spectral Estimation

