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Experiment: 1

Generation of Discrete Signals

Scilab code Solution 1.1 Unit Sample Sequence

1 // Capt ion : Unit Sample Sequence
2 clear;

3 clc;

4 close;

5 L = 4; // U p p e r l i m i t
6 n = -L:L;

7 x = [zeros(1,L),1,zeros(1,L)];

8 b = gca();

9 b.y_location = ” middle ”;
10 plot2d3( ’ gnn ’ ,n,x)
11 a=gce();

12 a.children (1).thickness =4;

13 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f Unit Sample
Sequence ’ , ’ n ’ , ’ x [ n ] ’ );

Scilab code Solution 1.2 Unit Step Sequence

1 // Capt ion : Unit Step Sequence
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2 clear;

3 clc;

4 close;

5 L = 4; // U p p e r l i m i t
6 n = -L:L;

7 x = [zeros(1,L),ones(1,L+1)];

8 a=gca();

9 a.y_location = ” middle ”;
10 plot2d3( ’ gnn ’ ,n,x)
11 title( ’ G raph i c a l R e p r e s e n t a t i o n o f Unit Step S i g n a l ’

)

12 xlabel( ’ n ’
);

13 ylabel( ’ x
[ n ] ’ );

Scilab code Solution 1.3 Discrete Ramp Sequence

1 // Capt ion : D i s c r e t e Ramp Sequence
2 clear;

3 clc;

4 close;

5 L = 4; // U p p e r l i m i t
6 n = -L:L;

7 x = [zeros(1,L) ,0:L];

8 b = gca();

9 b.y_location = ’ middle ’ ;
10 plot2d3( ’ gnn ’ ,n,x)
11 a=gce();

12 a.children (1).thickness =2;

13 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f D i s c r e t e Unit
Ramp Sequence ’ , ’ n ’ , ’ x [ n ] ’ );
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Scilab code Solution 1.4 Exponentially Decreasing Signal

1 // Capt ion : E x p o n e n t i a l l y D e c r e a s i n g S i g n a l
2 clear;

3 clc;

4 close;

5 a =0.5;

6 n = 0:10;

7 x = (a)^n;

8 a=gca();

9 a.x_location = ” o r i g i n ”;
10 a.y_location = ” o r i g i n ”;
11 plot2d3( ’ gnn ’ ,n,x)
12 a.thickness = 2;

13 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f E x p o n e n t i a l l y
D e c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [ n ] ’ );

Scilab code Solution 1.5 Exponentially Increasing Signal

1 // Capt ion : E x p o n e n t i a l l y I n c r e a s i n g S i g n a l
2 clear;

3 clc;

4 close;

5 a =1.5;

6 n =1:10;

7 x = (a)^n;

8 a=gca();

9 a.thickness = 2;

10 plot2d3( ’ gnn ’ ,n,x)
11 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f E x p o n e n t i a l l y

I n c r e a s i n g S i g n a l ’ , ’ n ’ , ’ x [ n ] ’ );
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Experiment: 2

Linear and Circular
Convolution of two sequences

Scilab code Solution 2.1 Program for Linear Convolution

1 // Capt ion : Program f o r L i n e a r Convo lu t i on
2 clc;

3 clear all;

4 close ;

5 x = input( ’ e n t e r x s eq ’ );
6 h = input( ’ e n t e r h seq ’ );
7 m = length(x);

8 n = length(h);

9 // Method 1 Using D i r e c t Convo lu t i on Sum Formula
10 for i = 1:n+m-1

11 conv_sum = 0;

12 for j = 1:i

13 if (((i-j+1) <= n)&(j <= m))

14 conv_sum = conv_sum + x(j)*h(i-j+1);

15 end;

16 y(i) = conv_sum;

17 end;

18 end;

19 disp(y’, ’ Convo lu t i on Sum u s i n g D i r e c t Formula Method
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= ’ )
20 // Method 2 Using I n b u i l t Funct ion
21 f = convol(x,h)

22 disp(f, ’ Convo lu t i on Sum R e s u l t u s i n g I n b u i l t Funt ion
= ’ )

23 // Method 3 Using f r e q u e n c y Domain m u l t i p l i c a t i o n
24 N = n+m-1;

25 x = [x zeros(1,N-m)];

26 h = [h zeros(1,N-n)];

27 f1 = fft(x)

28 f2 = fft(h)

29 f3 = f1.*f2; // f r e q domain m u l t i p l i c a t i o n
30 f4 = ifft(f3)

31 disp(f4, ’ Convo lu t i on Sum R e s u l t DFT − IDFT method = ’
)

32 // f 4 = r e a l ( f 4 )
33 subplot (3,1,1);

34 plot2d3( ’ gnn ’ ,x)
35 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f Input s i g n a l x ’ )

;

36 subplot (3,1,2);

37 plot2d3( ’ gnn ’ ,h)
38 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f Impul se s i g n a l h

’ );
39 subplot (3,1,3);

40 plot2d3( ’ gnn ’ ,y)
41 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f Output s i g n a l y ’

);

42 // R e s u l t
43 // e n t e r x s eq [ 1 1 1 1 ]
44 // e n t e r h seq [ 1 2 3 ]
45 // Convo lu t i on Sum u s i n g D i r e c t Formula Method =
46 // 1 . 3 . 6 . 6 . 5 . 3 .
47 // Convo lu t i on Sum R e s u l t u s i n g I n b u i l t Funt ion =
48 // 1 . 3 . 6 . 6 . 5 . 3 .
49 // Convo lu t i on Sum R e s u l t DFT − IDFT method =
50 // 1 . 3 . 6 . 6 . 5 . 3 .

8



Scilab code Solution 2.2 Program to find the Cicrcular Convolution

1 // Capt ion : Program to f i n d the C i c r c u l a r Convo lu t i on
o f g i v e n

2 // d i s c r e t e s e q u e n c e s u s i n g Matr ix method
3

4 clear;

5 clc;

6 x1 = [2,1,2,1]; // F i r s t s equence
7 x2 = [1,2,3,4]; // Second s equence
8 m = length(x1); // l e n g t h o f f i r s t s equence
9 n = length(x2); // l e n g t h o f s econd s equence

10 //To make l e n g t h o f x1 and x2 a r e Equal
11 if (m >n)

12 for i = n+1:m

13 x2(i) = 0;

14 end

15 elseif (n>m)

16 for i = m+1:n

17 x1(i) = 0;

18 end

19 end

20 N = length(x1);

21 x3 = zeros(1,N); // x3 = C i r c u l a r c o n v o l u t i o n r e s u l t
22 a(1) = x2(1);

23 for j = 2:N

24 a(j) = x2(N-j+2);

25 end

26 for i =1:N

27 x3(1) = x3(1)+x1(i)*a(i);

28 end

29 X(1,:)=a;

30 // C a l c u l a t i o n o f c i r c u l a r c o n v o l u t i o n
31 for k = 2:N
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32 for j =2:N

33 x2(j) = a(j-1);

34 end

35 x2(1) = a(N);

36 X(k,:)= x2;

37 for i = 1:N

38 a(i) = x2(i);

39 x3(k) = x3(k)+x1(i)*a(i);

40 end

41 end

42 disp(X, ’ C i r c u l a r Convo lu t i on Matr ix x2 [ n]= ’ )
43 disp(x3, ’ C i r c u l a r Convo lu t i on R e s u l t x3 [ n ] = ’ )
44 // R e s u l t
45 // C i r c u l a r Convo lu t i on Matr ix x2 [ n]=
46 //
47 // 1 . 4 . 3 . 2 .
48 // 2 . 1 . 4 . 3 .
49 // 3 . 2 . 1 . 4 .
50 // 4 . 3 . 2 . 1 .
51 //
52 // C i r c u l a r Convo lu t i on R e s u l t x3 [ n ] =
53 //
54 // 1 4 . 1 6 . 1 4 . 1 6 .
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Experiment: 3

Circular convolution using FFT

Scilab code Solution 3.1 Performing Circular COnvolution Using DFT
IDFT method

1 // Capt ion : Per fo rming C i r c u l a r COnvolut ion Using DFT−
IDFT method

2 clear all;

3 clc;

4 close;

5 L = 4; // Length o f the Sequence
6 N = 4; // N −p o i n t DFT
7 x1 = [2,1,2,1];

8 x2 = [1,2,3,4];

9 // Computing DFT
10 X1 = fft(x1 ,-1);

11 X2 = fft(x2 ,-1);

12 disp(X1, ’DFT o f x1 [ n ] i s X1( k )= ’ )
13 disp(X2, ’DFT o f x1 [ n ] i s X2( k )= ’ )
14 // M u l t i p l i c a t i o n o f 2 DFTs
15 X3 = X1.*X2;

16 disp(X3, ’DFT o f x3 [ n ] i s X3( k )= ’ )
17 // C i r c u l a r Convo lu t i on R e s u l t
18 x3 =abs(fft(X3 ,1))

19 disp(x3, ’ C i r c u l a r Convo lu t i on R e s u l t x3 [ n]= ’ )
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20 // R e s u l t
21 // DFT o f x1 [ n ] i s X1( k )=
22 //
23 // 6 . 0 2 . 0
24 //
25 // DFT o f x1 [ n ] i s X2( k )=
26 //
27 // 1 0 . − 2 . + 2 . i − 2 . − 2 . − 2 . i
28 //
29 // DFT o f x3 [ n ] i s X3( k )=
30 //
31 // 6 0 . 0 − 4 . 0
32 //
33 // C i r c u l a r Convo lu t i on R e s u l t x3 [ n]=
34 //
35 // 1 4 . 1 6 . 1 4 . 1 6 .
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Experiment: 4

Linear Convolution using
Circular Convolution

Scilab code Solution 4.1 Performing Linear Convolution using Circular
Convolution

1 // Capt ion : Per fo rming L i n e a r Convo lu t i on u s i n g
C i r c u l a r Convo lu t i on

2

3 clear;

4 clc;

5 close;

6 h = [1,2,3]; // Impul se Response o f LTI System
7 x = [1,2,2,1]; // Input Response o f LTI System
8 N1 = length(x);

9 N2 = length(h);

10 N = N1+N2 -1

11 disp(N, ’ Length o f Output Response y ( n ) ’ )
12 // Padding z e r o s to Make Length o f ’ h ’ and ’ x ’
13 // Equal to l e n g t h o f output r e s p o n s e ’ y ’
14 h1 = [h,zeros(1,N-N2)];

15 x1 = [x,zeros(1,N-N1)];

16 // Computing FFT
17 H = fft(h1 ,-1);
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18 X = fft(x1 ,-1);

19 // M u l t i p l i c a t i o n o f 2 DFTs
20 Y = X.*H

21 // L i n e a r Convo lu t i on R e s u l t
22 y =abs(fft(Y,1))

23 disp(X, ’DFT o f i /p X( k )= ’ )
24 disp(H, ’DFT o f impu l s e s equence H( k )= ’ )
25 disp(Y, ’DFT o f L i n e a r F i l t e r o/p Y( k )= ’ )
26 disp(y, ’ L i n e a r Convo lu t i on r e s u l t y [ n]= ’ )
27 // R e s u l t
28 // Length o f Output Response y ( n )
29 //
30 // 6 .
31 //
32 // DFT o f i /p X( k )=
33 //
34 // 6 . − 3 . 4 64 1 0 1 6 i 0 0 0 3 . 4 64 1 0 1 6 i
35 //
36 // DFT o f impu l s e s equence H( k )=
37 //
38 // 6 . 0 . 5 − 4 . 3 3 0 1 2 7 i − 1 . 5 + 0 . 8 6 6 0 2 5 4 i

2 . − 1 . 5 − 0 . 8 66 0 2 5 4 i 0 . 5 + 4 . 3 3 0 1 2 7 i
39 //
40 // DFT o f L i n e a r F i l t e r o/p Y( k )=
41 //
42 // 3 6 . − 1 5 . − 1 . 7 3 20 5 0 8 i 0 0 0 − 1 5 .

+ 1 . 7 3 2 0 50 8 i
43 //
44 // L i n e a r Convo lu t i on r e s u l t y [ n]=
45 //
46 // 1 . 4 . 9 . 1 1 . 8 . 3 .
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Experiment: 5

Calculation of FFT and IFFT
of a sequence

Scilab code Solution 5.5 Performing FFT and IFFT of a discrete sequence

1 // Capt ion : Per fo rming FFT and IFFT o f a d i s c r e t e
s equence

2 clear;

3 clc;

4 close;

5 L = 4; // Length o f the Sequence
6 N = 4; // N −p o i n t DFT
7 x = [1,2,3,4];

8 // Computing DFT
9 X = fft(x,-1);

10 disp(X, ’FFT o f x [ n ] i s X( k )= ’ )
11 x =abs(fft(X,1))

12 disp(x, ’ IFFT o f X( k ) i s x [ n]= ’ )
13 // P l o t t i n g the spectrum o f D i s c r e t e Sequence
14 subplot (2,1,1)

15 a=gca();

16 a.data_bounds =[0 ,0;5 ,10];

17 plot2d3( ’ gnn ’ ,0:length(x)-1,x)
18 b = gce();
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19 b.children (1).thickness =3;

20 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f D i s c r e t e
Sequence ’ , ’ n ’ , ’ x [ n ] ’ );

21 subplot (2,1,2)

22 a=gce();

23 a.data_bounds =[0 ,0;5 ,10];

24 plot2d3( ’ gnn ’ ,0:length(X)-1,abs(X))
25 b = gce();

26 b.children (1).thickness =3;

27 xtitle( ’ G raph i c a l R e p r e s e n t a t i o n o f D i s c r e t e
Spectrum ’ , ’ k ’ , ’X( k ) ’ );

28 // R e s u l t
29 //FFT o f x [ n ] i s X( k )=
30 //
31 // 1 0 . − 2 . + 2 . i − 2 . − 2 . − 2 . i
32 //
33 //IFFT o f X( k ) i s x [ n]=
34 //
35 // 1 . 2 . 3 . 4 .
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Experiment: 6

Time and Frequency Response
of LTI systems

Scilab code Solution 6.1 Time and Frequency Response

1 // Capt ion : Program to g e n e r a t e and p l o t the impu l s e
r e s p o n s e and f r e q u e n c y

2 // r e s p o n s e o f a L i n e a r c o n s t a n t c o e f f i c i e n t f i r s t
o r d e r D i f f e r e n t i a l Equat ion

3 // [ 1 ] . Impul se r e s p o n s e h ( t )= exp(−a∗ t ) u ( t ) , A>0
4 // [ 2 ] . Frequency r e s p o n s e H( jw ) = 1/( jw+a )
5 clear;

6 clc;

7 close;

8 // [ 1 ] . To g e n e r a t e and p l o t the impu l s e r e s p o n s e
9 a =1; // Constant c o e f f i c i e n t a =1

10 Dt = 0.005;

11 t = 0:Dt:10;

12 ht = exp(-a*t);

13 figure (1)

14 a = gca();

15 a.y_location = ” o r i g i n ”;
16 plot(t,ht);

17 xlabel( ’ t ime t −−−−−−> ’ );

17



18 ylabel( ’ h ( t ) ’ )
19 title( ’ Impul se Repsonse o f I s t Order L i n e a r Constant

C o e f f . D i f f e r e n t i a l Equ . ’ )
20 //
21 // [ 2 ] . F ind ing Frequency r e s p o n s e u s i n g Cont inuous

Time F o u r i e r Transform
22 Wmax = 2*%pi*1; // Analog Frequency = 1Hz
23 K = 4;

24 k = 0:(K/1000):K;

25 W = k*Wmax/K;

26 HW = ht* exp(-sqrt(-1)*t’*W) * Dt;

27 HW_Mag = abs(HW);

28 W = [-mtlb_fliplr(W), W(2:1001) ]; // Omega from −
Wmax to Wmax

29 HW_Mag = [mtlb_fliplr(HW_Mag),HW_Mag (2:1001) ];

30 [HW_Phase ,db] = phasemag(HW);

31 HW_Phase = [-mtlb_fliplr(HW_Phase),HW_Phase (2:1001)

];

32 figure (2)

33 // P l o t t i n g Magnitude Response
34 subplot (2,1,1);

35 a = gca();

36 a.y_location = ” o r i g i n ”;
37 plot(W,HW_Mag);

38 xlabel( ’ Frequency i n Radians / Seconds−−−> W’ );
39 ylabel( ’ abs (H(jW) ) ’ )
40 title( ’ Magnitude Response ’ )
41 // P l o t t i n g Phase Reponse
42 subplot (2,1,2);

43 a = gca();

44 a.y_location = ” o r i g i n ”;
45 a.x_location = ” o r i g i n ”;
46 plot(W,HW_Phase*%pi /180);

47 xlabel( ’ Frequency i n
Radians / Seconds−−−> W’ );

48 ylabel( ’
<H

(jW) ’ )
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49 title( ’ Phase Response i n Radians ’ )
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Experiment: 7

Sampling, Verification of
Sampling and Effect of aliasing

check Appendix AP 1 for dependency:

sincnew.sce

Scilab code Solution 7.1 Sampling and Reconstruction of a Signal

1 // Capt ion : Sampl ing and R e c o n s t r u c t i o n o f a S i g n a l x
( t ) = exp(−A∗ | t | )

2 // D i s c r e t e Time Sampled S i g n a l x (nT)= exp(−A∗ |nT | )
3 // F o l l o w i n g Sampl ing F r e q u e n c i e s a r e used :
4 // [ 1 ] . Fs = 1 Hz [ 2 ] . Fs = 2 Hz [ 3 ] . Fs = 4Hz [ 4 ] . Fs

=20 Hz [ 5 ] . Fs =100Hz
5 // A l i a s i n g E f f e c t : As the Sampl ing f r e q u e n c y

i n c r e a s e s a l i a s i n g e f f e c t d e c r e a s e s
6 clear;

7 clc;

8 close;

9 // Analog S i g n a l
10 A =1; // Amplitude
11 Dt = 0.005;

12 t = -2:Dt:2;
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13 // Cont inuous Time S i g n a l
14 xa = exp(-A*abs(t));

15 // D i s c r e t e Time S i g n a l
16 Fs =input( ’ Enter the Sampl ing Frequency i n Hertz ’ );

// Fs = 1Hz , 2 Hz , 4 Hz , 2 0 Hz , 1 0 0 Hz
17 Ts = 1/Fs;

18 nTs = -2:Ts:2;

19 x = exp(-A*abs(nTs));

20 // Analog S i g n a l r e c o n s t r u c t i o n
21 Dt = 0.005;

22 t = -2:Dt:2;

23 Xa = x *sincnew(Fs*(ones(length(nTs) ,1)*t-nTs ’*ones

(1,length(t))));

24 // P l o t t i n g the o r i g i n a l s i g n a l and r e c o n s t r u c t e d
s i g n a l

25 subplot (2,1,1);

26 a =gca();

27 a.x_location = ” o r i g i n ”;
28 a.y_location = ” o r i g i n ”;
29 plot(t,xa);

30 xlabel( ’ t i n s e c . ’ );
31 ylabel( ’ xa ( t ) ’ )
32 title( ’ O r i g i n a l Analog S i g n a l ’ )
33 subplot (2,1,2);

34 a =gca();

35 a.x_location = ” o r i g i n ”;
36 a.y_location = ” o r i g i n ”;
37 xlabel( ’ t i n s e c . ’ );
38 ylabel( ’ xa ( t ) ’ )
39 title( ’ R e c on s t r u c t e d S i g n a l u s i n g s i n c f u n c t i o n , Fs

= 100Hz ’ );
40 plot(t,Xa);
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Experiment: 8

Design of FIR Filters Window
Design

Scilab code Solution 8.1 Program to Design FIR Low Pass Filter

1 // Capt ion : Program to Des ign FIR Low Pass F i l t e r
2 clc;

3 close;

4 M = input( ’ Enter the Odd F i l t e r Length = ’ );
// F i l t e r l e n g t h

5 Wc = input( ’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’ );
// D i g i t a l C u t o f f f r e q u e n c y

6 Tuo = (M-1)/2 // Center Value
7 for n = 1:M

8 if (n == Tuo+1)

9 hd(n) = Wc/%pi;

10 else

11 hd(n) = sin(Wc*((n-1)-Tuo))/(((n-1)-Tuo)*%pi)

;

12 end

13 end

14 // Rec tangu l a r Window
15 for n = 1:M

16 W(n) = 1;
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17 end

18 // Windowing F i t l e r C o e f f i c i e n t s
19 h = hd.*W;

20 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’ )
21

22 [hzm ,fr]=frmag(h ,256);

23 hzm_dB = 20* log10(hzm)./max(hzm);

24 subplot (2,1,1)

25 plot (2*fr,hzm)

26 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
27 ylabel( ’ Magnitude ’ );
28 title( ’ Frequency Response 0 f FIR LPF u s i n g

Rec tangu l a r window ’ )
29 xgrid (1)

30 subplot (2,1,2)

31 plot (2*fr,hzm_dB)

32 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
33 ylabel( ’ Magnitude i n dB ’ );
34 title( ’ Frequency Response 0 f FIR LPF u s i n g

Rec tangu l a r window ’ )
35 xgrid (1)

36 // R e s u l t
37 // Enter the Odd F i l t e r Length = 7
38 // Enter the D i g i t a l C u t o f f f r e q u e n c y = %pi /2
39 //
40 // F i l t e r C o e f f i c i e n t s a r e
41 //
42 // − 0 . 1 0 61 0 3 3
43 // 1 . 9 4 9D−17 = 0 . 0
44 // 0 . 3 1 8 3 0 99
45 // 0 . 5
46 // 0 . 3 1 8 3 0 99
47 // 1 . 9 4 9D−17 = 0 . 0
48 // − 0 . 1 0 61 0 3 3
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Scilab code Solution 8.2 rogram to Design FIR High Pass Filter

1 // Capt ion : Program to Des ign FIR High Pass F i l t e r
2 clear;

3 clc;

4 close;

5 M = input( ’ Enter the Odd F i l t e r Length = ’ );
// F i l t e r l e n g t h

6 Wc = input( ’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’ );
// D i g i t a l C u t o f f f r e q u e n c y

7 Tuo = (M-1)/2 // Center Value
8 for n = 1:M

9 if (n == Tuo+1)

10 hd(n) = 1-Wc/%pi;

11 else

12 hd(n) = (sin(%pi*((n-1)-Tuo)) -sin(Wc*((n-1)-

Tuo)))/(((n-1)-Tuo)*%pi);

13 end

14 end

15 // Rec tangu l a r Window
16 for n = 1:M

17 W(n) = 1;

18 end

19 // Windowing F i t l e r C o e f f i c i e n t s
20 h = hd.*W;

21 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’ )
22 [hzm ,fr]=frmag(h ,256);

23 hzm_dB = 20* log10(hzm)./max(hzm);

24 subplot (2,1,1)

25 plot (2*fr,hzm)

26 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
27 ylabel( ’ Magnitude ’ );
28 title( ’ Frequency Response 0 f FIR HPF u s i n g

Rec tangu l a r window ’ )
29 xgrid (1)

30 subplot (2,1,2)

31 plot (2*fr,hzm_dB)

32 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
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33 ylabel( ’ Magnitude i n dB ’ );
34 title( ’ Frequency Response 0 f FIR HPF u s i n g

Rec tangu l a r window ’ )
35 xgrid (1)

36 // R e s u l t
37 // Enter the Odd F i l t e r Length = 5
38 // Enter the D i g i t a l C u t o f f f r e q u e n c y = %pi /4
39 // F i l t e r C o e f f i c i e n t s a r e
40 //
41 // − 0 . 1 5 91 5 4 9
42 // − 0 . 2 2 50 7 9 1
43 // 0 . 7 5
44 // − 0 . 2 2 50 7 9 1
45 // − 0 . 1 5 91 5 4 9

Scilab code Solution 8.3 Program to Design FIR Band Pass Filter

1 // Capt ion : Program to Des ign FIR Band Pass F i l t e r
2 clear;

3 clc;

4 close;

5 M = input( ’ Enter the Odd F i l t e r Length = ’ );
// F i l t e r l e n g t h

6 // D i g i t a l C u t o f f f r e q u e n c y [ Lower Cuto f f , Upper
C u t o f f ]

7 Wc = input( ’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’ );
8 Wc2 = Wc(2)

9 Wc1 = Wc(1)

10 Tuo = (M-1)/2 // Center Value
11 hd = zeros(1,M);

12 W = zeros(1,M);

13 for n = 1:11

14 if (n == Tuo+1)

15 hd(n) = (Wc2 -Wc1)/%pi;

16 else
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17 n

18 hd(n) = (sin(Wc2*((n-1)-Tuo)) -sin(Wc1 *((n-1)-

Tuo)))/(((n-1)-Tuo)*%pi);

19 end

20 if(abs(hd(n)) <(0.00001))

21 hd(n)=0;

22 end

23 end

24 hd;

25 // Rec tangu l a r Window
26 for n = 1:M

27 W(n) = 1;

28 end

29 // Windowing F i t l e r C o e f f i c i e n t s
30 h = hd.*W;

31 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’ )
32 [hzm ,fr]=frmag(h ,256);

33 hzm_dB = 20* log10(hzm)./max(hzm);

34 subplot (2,1,1)

35 plot (2*fr,hzm)

36 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
37 ylabel( ’ Magnitude ’ );
38 title( ’ Frequency Response 0 f FIR BPF u s i n g

Rec tangu l a r window ’ )
39 xgrid (1)

40 subplot (2,1,2)

41 plot (2*fr,hzm_dB)

42 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
43 ylabel( ’ Magnitude i n dB ’ );
44 title( ’ Frequency Response 0 f FIR BPF u s i n g

Rec tangu l a r window ’ )
45 xgrid (1)

46 // R e s u l t
47 // Enter the Odd F i l t e r Length = 11
48 // Enter the D i g i t a l C u t o f f f r e q u e n c y = [ %pi /4 ,3∗%pi

/ 4 ]
49 // F i l t e r C o e f f i c i e n t s a r e
50 // 0 . 0 . 0 . − 0 . 3 1 83 0 9 9 0 . 0 . 5 0 . −

26



0 . 3 18 3 0 9 9 0 . 0 . 0 .

Scilab code Solution 8.4 Program to Design FIR Band Reject Filter

1 // Capt ion : Program to Des ign FIR Band R e j e c t F i l t e r
2 clear ;

3 clc;

4 close;

5 M = input( ’ Enter the Odd F i l t e r Length = ’ );
// F i l t e r l e n g t h

6 // D i g i t a l C u t o f f f r e q u e n c y [ Lower Cuto f f , Upper
C u t o f f ]

7 Wc = input( ’ Enter the D i g i t a l C u t o f f f r e q u e n c y = ’ );
8 Wc2 = Wc(2)

9 Wc1 = Wc(1)

10 Tuo = (M-1)/2 // Center Value
11 hd = zeros(1,M);

12 W = zeros(1,M);

13 for n = 1:M

14 if (n == Tuo+1)

15 hd(n) = 1-((Wc2 -Wc1)/%pi);

16 else

17 hd(n)=(sin(%pi*((n-1)-Tuo))-sin(Wc2*((n-1)-Tuo))+

sin(Wc1*((n-1)-Tuo)))/(((n-1)-Tuo)*%pi);

18 end

19 if(abs(hd(n)) <(0.00001))

20 hd(n)=0;

21 end

22 end

23

24 // Rec tangu l a r Window
25 for n = 1:M

26 W(n) = 1;

27 end

28 // Windowing F i t l e r C o e f f i c i e n t s

27



29 h = hd.*W;

30 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e ’ )
31 [hzm ,fr]=frmag(h ,256);

32 hzm_dB = 20* log10(hzm)./max(hzm);

33 subplot (2,1,1)

34 plot (2*fr,hzm)

35 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
36 ylabel( ’ Magnitude ’ );
37 title( ’ Frequency Response 0 f FIR BSF u s i n g

Rec tangu l a r window ’ )
38 xgrid (1)

39 subplot (2,1,2)

40 plot (2*fr,hzm_dB)

41 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
42 ylabel( ’ Magnitude i n dB ’ );
43 title( ’ Frequency Response 0 f FIR BSF u s i n g

Rec tangu l a r window ’ )
44 xgrid (1)

45 // R e s u l t
46 // Enter the Odd F i l t e r Length = 11
47 // Enter the D i g i t a l C u t o f f f r e q u e n c y =[%pi /3 ,2∗%pi

/ 3 ]
48 // F i l t e r C o e f f i c i e n t s a r e
49 // column 1 to 9
50 // 0 . − 0 . 1 37 8 3 2 2 0 . 0 . 2 7 56 6 4 4 0 .

0 . 6 6 66 6 6 7 0 . 0 . 2 7 5 66 4 4 0 .
51 // column 10 to 11
52 // − 0 . 1 3 78 3 2 2 0 .
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Experiment: 9

Design of FIR Filters
Frequency Sampling

Scilab code Solution 9.1 Design of FIR LPF Filter using Frequecny Sam-
pling Technique

1 // Cpat ion : Des ign o f FIR LPF F i l t e r u s i n g Frequecny
Sampl ing Technique

2

3 clear;

4 clc;

5 close;

6 M =15;

7 Hr = [1,1,1,1,0.4,0,0,0];

8 for k =1: length(Hr)

9 G(k)=((-1)^(k-1))*Hr(k);

10 end

11 h = zeros(1,M);

12 U = (M-1)/2

13 for n = 1:M

14 h1 = 0;

15 for k = 2:U+1

16 h1 =G(k)*cos ((2* %pi/M)*(k-1) *((n-1) +(1/2)))+h1;

17 end

29



18 h(n) = (1/M)* (G(1) +2*h1);

19 end

20 disp(h, ’ F i l t e r C o e f f i c i e n t s a r e h ( n )= ’ )
21 [hzm ,fr]=frmag(h ,256);

22 hzm_dB = 20* log10(hzm)./max(hzm);

23 subplot (2,1,1)

24 plot (2*fr,hzm)

25 a=gca();

26 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
27 ylabel( ’ Magnitude ’ );
28 title( ’ Frequency Response 0 f FIR LPF u s i n g Frequency

Sampl ing Technique with M = 15 with C u t o f f
Frequency = 0 . 4 6 6 ’ )

29 xgrid (2)

30 subplot (2,1,2)

31 plot (2*fr,hzm_dB)

32 a=gca();

33 xlabel( ’ Normal i zed D i g i t a l Frequency W’ );
34 ylabel( ’ Magnitude i n dB ’ );
35 title( ’ Frequency Response 0 f FIR LPF u s i n g Frequency

Sampl ing Technique with M = 15 with C u t o f f
Frequency = 0 . 4 6 6 ’ )

36 xgrid (2)

37 // R e s u l t
38 // F i l t e r C o e f f i c i e n t s a r e h ( n )=
39 // column 1 to 7
40 //
41 // −0.0141289 −0.0019453 0 . 0 4 0 . 0 1 2 2 3 45

−0.0913880 −0.0180899 0 . 3 1 3 31 7 6
42 //
43 // column 8 to 14
44 //
45 // 0 . 5 2 0 . 3 1 3 3 1 7 6 − 0 . 0 18 0 8 9 9 − 0 . 0 91 3 8 8 0

0 . 0 1 22 3 4 5 0 . 0 4 − 0 . 0 0 19 4 5 3
46 //
47 // column 15
48 //
49 // − 0 . 0 1 41 2 8 9
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Experiment: 10

Design of IIR Filters-
Butterworth

Scilab code Solution 10.1 Digital IIR First Order Butterworth LPF Fil-
ter

1 // Capt ion : To d e s i g n a d i g i t a l I IR F i r s t Order
Butte rworth LPF F i l t e r

2 // Using B i l i n e a r Trans f o rmat i on
3 clear all;

4 clc;

5 close;

6 s = poly(0, ’ s ’ );
7 Omegac = 0.2* %pi; // C u t o f f f r e q u e n c y
8 H = Omegac /(s+Omegac); // Analog f i r s t o r d e r

Butte rworth f i l t e r t r a n f e r f u n c t i o n
9 T =1; // Sampl ing p e r i o d T = 1 Second

10 z = poly(0, ’ z ’ );
11 Hz = horner(H,(2/T)*((z-1)/(z+1))) // B i l i n e a r

Trans f o rmat i on
12 HW =frmag(Hz(2),Hz(3) ,512); // Frequency r e s p o n s e

f o r 512 p o i n t s
13 W = 0:%pi /511: %pi;

14 a=gca();
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15 a.thickness = 1;

16 plot(W/%pi ,HW , ’ r ’ )
17 a.foreground = 1;

18 a.font_style = 9;

19 xgrid (1)

20 xtitle( ’ Magnitude Response o f S i n g l e p o l e LPF F i l t e r
C u t o f f f r e q u e n c y = 0 . 2∗ p i ’ , ’ Normal i zed D i g i t a l

Frequency−−−> ’ , ’ Magnitude ’ );

Scilab code Solution 10.2 HPF Using Digital Filter Transformation

1 // Capt ion : To d e s i g n F i r s t Order Butte rworth Low
Pass F i l t e r and c o v e r t i t i n t o

2 // HPF Using D i g i t a l F i l t e r Trans f o rmat i on
3 clear all;

4 clc;

5 close;

6 s = poly(0, ’ s ’ );
7 Omegac = 0.2* %pi; // F i l t e r c u t o f f f r e q u e n c y
8 H = Omegac /(s+Omegac); // F i r s t o r d e r Butte rworth IIR

f i l t e r
9 T =1; // Sampl ing p e r i o d T = 1 Second

10 z = poly(0, ’ z ’ );
11 Hz_LPF = horner(H,(2/T)*((z-1)/(z+1))); // B i l i n e a r

Trans f o rmat i on
12 alpha = -(cos(( Omegac+Omegac)/2))/(cos((Omegac -

Omegac)/2));

13 HZ_HPF=horner(Hz_LPF ,-(z+alpha)/(1+ alpha*z))//LPF to
HPF d i g i t a l t r a n s f o r m a t i o n

14 HW =frmag(HZ_HPF (2),HZ_HPF (3) ,512); // Frequency
r e s p o n s e f o r 512 p o i n t s

15 W = 0:%pi /511: %pi;

16 a=gca();

17 a.thickness = 1;

18 plot(W/%pi ,HW , ’ r ’ )
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19 a.foreground = 1;

20 a.font_style = 9;

21 xgrid (1)

22 xtitle( ’ Magnitude Response o f S i n g l e p o l e HPF F i l t e r
C u t o f f f r e q u e n c y = 0 . 2∗ p i ’ , ’ Normal i zed D i g i t a l

Frequency W/ pi−−−> ’ , ’ Magnitude ’ );

Scilab code Solution 10.3 BPF using Digital Transformation

1 // / Capt ion : To Des ign a D i g i t a l I IR Butte rworth LPF
F i l t e r from Analog IIR

2 // Butte rworth F i l t e r and LPF to BPF u s i n g D i g i t a l
Trans f o rmat i on

3 clear all;

4 clc;

5 close;

6 omegaP = 0.2* %pi; // F i l t e r c u t o f f f r e q u e n c y
7 omegaL = (1/5)*%pi; // Lower C u t o f f f r e q u e n c y f o r

BSF
8 omegaU = (3/5)*%pi; // Upper C u t o f f f r e q u e n c y f o r

BSF
9 z=poly(0, ’ z ’ );

10 H_LPF = (0.245) *(1+(z^-1))/(1 -0.509*(z^-1)); //
B i l i n e a r t r a n s f o r m a t i o n

11 alpha = (cos(( omegaU+omegaL)/2)/cos((omegaU -omegaL)

/2));// parameter ’ a lpha ’
12 // parameter ’ k ’
13 k = (cos(( omegaU - omegaL)/2)/sin(( omegaU - omegaL)

/2))*tan(omegaP /2);

14 NUM =-((z^2) -((2* alpha*k/(k+1))*z)+((k-1)/(k+1)));

15 DEN = (1 -((2* alpha*k/(k+1))*z)+(((k-1)/(k+1))*(z^2))

);

16 HZ_BPF=horner(H_LPF ,NUM/DEN);//LPF to BPF c o n v e r s i o n
u s i n g d i g i t a l t r a n s f o r m a t i o n

17 disp(HZ_BPF , ’ D i g i t a l BPF IIR F i l t e r H(Z)= ’ );
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18 HW =frmag(HZ_BPF (2),HZ_BPF (3) ,512);// f r e q u e n c y
r e s p o n s e

19 W = 0:%pi /511: %pi;

20 a=gca();

21 a.thickness = 1;

22 plot(W/%pi ,HW, ’ r ’ )
23 a.foreground = 1;

24 a.font_style = 9;

25 xgrid (1)

26 xtitle( ’ Magnitude Response o f BPF F i l t e r c u t o f f
f r e q u e n c y [ 0 . 2 , 0 . 6 ] ’ , ’ Normal i zed D i g i t a l
Frequency−−−> ’ , ’ Magnitude ’ );

Scilab code Solution 10.4 BSF using Digital Transformation

1 // Capt ion : To Des ign a D i g i t a l I IR Butte rworth LPF
F i l t e r from Analog IIR

2 // Butte rworth F i l t e r and LPF to BSF u s i n g D i g i t a l
Trans f o rmat i on

3 clear all;

4 clc;

5 close;

6 omegaP = 0.2* %pi; // F i l t e r c u t o f f f r e q u e n c y
7 omegaL = (1/5)*%pi; // Lower C u t o f f f r e q u e n c y f o r

BSF
8 omegaU = (3/5)*%pi; // Upper C u t o f f f r e q u e n c y f o r

BSF
9 z=poly(0, ’ z ’ );

10 H_LPF = (0.245) *(1+(z^-1))/(1 -0.509*(z^-1))//
B i l i n e a r t r a n s f o r m a t i o n

11 alpha = (cos(( omegaU+omegaL)/2)/cos((omegaU -omegaL)

/2)); // parameter ’ a lpha ’
12 k = tan(( omegaU - omegaL)/2)*tan(omegaP /2); //

parameter ’ k ’
13 NUM =((z^2) -((2* alpha /(1+k))*z)+((1-k)/(1+k))); //
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Numerator
14 DEN = (1 -((2* alpha /(1+k))*z)+(((1 -k)/(1+k))*(z^2)));

// Denominator
15 HZ_BSF=horner(H_LPF ,NUM/DEN); //LPF to BSF

c o n v e r s i o n u s i n g d i g i t a l t r a n s f o r m a t i o n
16 HW =frmag(HZ_BSF (2),HZ_BSF (3) ,512); // f r e q u e n c y

r e s p o n s e f o r 512 p o i n t s
17 W = 0:%pi /511: %pi;

18 a=gca();

19 a.thickness = 1;

20 plot(W/%pi ,HW, ’ r ’ )
21 a.foreground = 1;

22 a.font_style = 9;

23 xgrid (1)

24 xtitle( ’ Magnitude Response o f BSF F i l t e r c u t o f f f r e q
[ 0 . 2 , 0 . 6 ] ’ , ’ Normal i zed D i g i t a l Frequency−−−> ’ , ’

Magnitude ’ );
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Experiment: 11

Design of IIR Filters
Chebyshev

Scilab code Solution 11.1 To Design the Digtial Chebyshev IIR Filter

1 // Program To Des ign the D i g t i a l Chebyshev IIR F i l t e r
2 clear;

3 clc;

4 close;

5 Wp = input( ’ Enter the D i g i t a l Pass Band Edge
Frequency ’ );

6 Ws = input( ’ Enter the D i g i t a l Stop Band Edge
Frequency ’ );

7 T = input( ’ Sampl ing I n t e r v a l ’ )
8 OmegaP = (2/T)*tan(Wp/2)

9 OmegaS = (2/T)*tan(Ws/2)

10 Delta1 = input( ’ Enter the Pass Band Ripp l e ’ );
11 Delta2 = input( ’ Enter the Stop Band Ripp l e ’ );
12 Delta = sqrt (((1/ Delta2)^2) -1)

13 Epsilon = sqrt (((1/ Delta1)^2) -1)

14 N = (acosh(Delta/Epsilon))/(acosh(OmegaS/OmegaP))

15 N = ceil(N)

16 OmegaC = OmegaP /((((1/ Delta1)^2) -1)^(1/(2*N)))

17 [pols ,gn] = zpch1(N,Epsilon ,OmegaP)
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18 Hs = poly(gn, ’ s ’ , ’ c o e f f ’ )/real(poly(pols , ’ s ’ ))
19 z = poly(0, ’ z ’ );
20 Hz = horner(Hs ,((2/T)*((z-1)/(z+1))))

21 HW =frmag(Hz(2),Hz(3) ,512); // Frequency r e s p o n s e
f o r 512 p o i n t s

22 W = 0:%pi /511: %pi;

23 a=gca();

24 a.thickness = 1;

25 plot(W/%pi ,abs(HW), ’ r ’ )
26 a.foreground = 1;

27 a.font_style = 9;

28 xgrid (1)

29 xtitle( ’ Magnitude Response o f Chebyshev LPF F i l t e r ’ ,
’ Normal i zed D i g i t a l Frequency−−−> ’ , ’ Magnitude i n
dB ’ );

30 //RESULT
31 // Enter the D i g i t a l Pass Band Edge Frequency 0 . 2∗%pi
32 // Enter the D i g i t a l Stop Band Edge Frequency 0 . 6∗%pi
33 // Sampl ing I n t e r v a l 1
34 // T =
35 //
36 // 1 .
37 // OmegaP =
38 //
39 // 0 . 6 4 9 8 3 94
40 // OmegaS =
41 //
42 // 2 . 7 5 2 7 6 38
43 // Enter the Pass Band Ripp l e 0 . 8
44 // Enter the Stop Band Ripp l e 0 . 2
45 // De l ta =
46 //
47 // 4 . 8 9 8 9 7 95
48 // E p s i l o n =
49 //
50 // 0 . 7 5
51 // N =
52 //

38



53 // 1 . 2 0 7 9 5 48
54 // N =
55 //
56 // 2 .
57 // OmegaC =
58 //
59 // 0 . 7 5 0 3 6 99
60 // gn =
61 //
62 // 0 . 2 8 1 5 2 75
63 // p o l s =
64 //
65 // − 0 . 2 6 52 9 5 8 + 0 . 5 3 0 5 9 1 6 i − 0 . 2 6 52 9 5 8 −

0 . 5 3 05 9 1 6 i
66 // Hs =
67 //
68 // 0 . 2 8 1 5 2 75
69 // −−−−−−−−−−−−−−−−−−−−−−−−−
70 // 2
71 // 0 . 3 5 1 9 0 94 + 0 . 5 3 05 9 1 6 s + s
72 // Hz =
73 //
74 // 2
75 // 0 . 2 8 1 5 2 75 + 0 . 5 6 30 5 5 0 z + 0 . 2 8 15 2 7 5 z
76 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 // 2
78 // 3 . 2 9 0 7 2 61 − 7 . 2 96 1 8 1 3 z + 5 . 4 13 0 9 2 6 z
79 //−−>0.5∗0.5629
80 // ans =
81 //
82 // 0 . 2 8 1 4 5
83 //
84 //−−>Hz ( 2 )= Hz ( 2 ) /5 . 4130926
85 // Hz =
86 //
87 // 2
88 // 0 . 0 5 2 0 0 86 + 0 . 1 0 40 1 7 2 z + 0 . 0 5 20 0 8 6 z
89 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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90 // 2
91 // 3 . 2 9 0 7 2 61 − 7 . 2 96 1 8 1 3 z + 5 . 4 13 0 9 2 6 z
92 //
93 //−−>Hz ( 3 ) = Hz ( 3 ) /5 . 41 30926
94 // Hz =
95 //
96 // 2
97 // 0 . 0 5 2 0 0 86 + 0 . 1 0 40 1 7 2 z + 0 . 0 5 20 0 8 6 z
98 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 // 2

100 // 0 . 6 0 7 9 1 98 − 1 . 3 4 78 7 6 7 z + z
101 //
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Experiment: 12

Decimation by polyphase
decomposition

Scilab code Solution 12.1 Design of Ployphase Decimator

1 // Capt ion : Dec imat ion by 2 , F i l t e r Length = 30
2 // C u t o f f Frequency Wc = %pi /2
3 // Pass band Edge f r e q u e n c y fp = 0 . 2 5 and a Stop band

edge f r e q u e n c y f s = 0 . 3 1
4 // Choose the number o f c o s i n e f u n c t i o n s and c r e a t e

a dense g r i d
5 // i n [ 0 , 0 . 2 5 ] and [ 0 . 3 1 , 0 . 5 ]
6 // magnitude f o r pa s s band = 1 & stop band = 0 ( i . e )

[ 1 0 ]
7 // Weight ing f u n c t i o n =[2 1 ]
8 clear;

9 clc;

10 close;

11 M = 30; // F i l t e r Length
12 D = 2; // Dec imat ion Facto r = 2
13 Wc = %pi/2; // C u t o f f Frequency
14 Wp = Wc/(2* %pi); // Passband Edge Frequency
15 Ws = 0.31; // Stopband Edge Frequency
16 hn=eqfir(M,[0 Wp;Ws .5] ,[1 0],[2 1]);
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17 disp(hn, ’ The LPF F i l t e r C o e f f i c i e n t s a r e : ’ )
18 // Obta in ing Po lyphase F i l t e r C o e f f i c i e n t s from hn
19 p = zeros(D,M/D);

20 for k = 1:D

21 for n = 1:( length(hn)/D)

22 p(k,n) = hn(D*(n-1)+k);

23 end

24 end

25 disp(p, ’ The Po lyphase Decimator f o r D =2 a r e : ’ )
26 // R e s u l t
27 //The LPF F i l t e r C o e f f i c i e n t s a r e :
28 // column 1 to 7
29 // 0 . 0 0 6 0 2 03 − 0 . 0 12 8 0 3 7 − 0 . 0 02 8 5 3 4 0 . 0 1 3 6 6 8 7

− 0 . 0 04 6 7 6 1 − 0 . 0 19 7 0 0 2 0 . 01 5 9 9 1 5
30

31 // column 8 to 14
32 // 0 . 0 2 1 3 8 11 − 0 . 0 34 9 8 0 8 − 0 . 0 15 6 2 5 1 0 . 0 6 4 0 2 3 0

− 0 . 0 07 3 6 0 0 − 0 . 1 18 7 3 2 5 0 . 09 8 0 5 2 2
33 // column 15 to 21
34 // 0 . 4 9 2 2 4 76 0 . 4 9 2 24 7 6 0 . 0 98 0 5 2 2 − 0 . 1 18 7 3 2 5

− 0 . 0 07 3 6 0 0 0 . 06 4 0 2 3 0 − 0 . 0 15 6 2 5 1
35 // column 22 to 28
36 //− 0 . 0 34 9 8 0 8 0 . 0 2 1 3 8 1 1 0 . 0 1 5 9 9 15 − 0 . 0 1 97 0 0 2

− 0 . 0 04 6 7 6 1 0 . 0 1 3 6 6 8 7 − 0 . 0 02 8 5 3 4
37

38 // column 29 to 30
39 //− 0 . 0 12 8 0 3 7 0 . 0 0 6 0 2 0 3
40

41 //The Polyphase Decimator f o r D =2 a r e :
42 // column 1 to 7
43 // 0 . 0 0 6 0 2 03 − 0 . 0 02 8 5 3 4 − 0 . 0 04 6 7 6 1 0 . 0 1 5 9 9 1 5

− 0 . 0 3 49 8 0 8 0 . 06 4 0 2 3 0 − 0 . 1 18 7 3 2 5
44 //− 0 . 0 12 8 0 3 7 0 . 0 1 3 6 6 8 7 − 0 . 0 19 7 0 0 2 0 . 0 2 1 3 8 1 1

− 0 . 0 15 6 2 5 1 − 0 . 0 07 3 6 0 0 0 . 0 9 8 0 5 2 2
45

46 // column 8 to 14
47 // 0 . 4 9 2 2 4 76 0 . 0 9 8 05 2 2 − 0 . 0 07 3 6 0 0 − 0 . 0 15 6 2 5 1

0 . 0 21 3 8 1 1 − 0 . 0 19 7 0 0 2 0 . 0 1 3 6 6 8 7
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48 // 0 . 4 9 2 2 4 76 − 0 . 1 18 7 3 2 5 0 . 0 6 4 0 2 3 0 − 0 . 0 34 9 8 0 8
0 . 0 1 59 9 1 5 − 0 . 0 0 46 7 6 1 − 0 . 0 0 28 5 3 4

49 // column 15
50 //− 0 . 0 1 28 0 3 7
51 // 0 . 0 0 6 0 2 03
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Experiment: 13

Periodogram based Spectral
Estimation

Scilab code Solution 13.1 Periodogram Estimate of Given Discrete Se-
quence

1 // Capt ion : Per iodogram Est imate o f Given D i s c r e t e
Sequence

2 //x ( n ) ={1 , 0 , 2 , 0 , 3 , 1 , 0 , 2}
3 // u s i n g DFT
4 clear;

5 clc;

6 close;

7 N =8; //8−p o i n t DFT
8 x = [1,0,2,0,3,1,0,2]; // g i v e n d i s c r e t e s equence
9 X = dft(x,-1); //8−p o i n t DFT o f g i v e n d i s c r e t e

s equence
10 Pxx = (1/N)*(abs(X).^2); // Per idogram Est imate
11 disp(X, ’DFT o f x ( n ) i s X( k )= ’ )
12 disp(Pxx , ’ Per idogram o f x ( n ) i s Pxx ( k/N)= ’ )
13 figure (1)

14 a = gca();

15 a.data_bounds =[0 ,0;8 ,11];

16 plot2d3( ’ gnn ’ ,[1:N],Pxx)
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17 a.foreground = 5;

18 a.font_color = 5;

19 a.font_style = 5;

20 title( ’ Per idogram Est imate ’ )
21 xlabel( ’ D i s c r e t e Frequency V a r i a b l e K −−−−−> ’ )
22 ylabel( ’ Per iodogram Pxx ( k /N) −−−−> ’ )
23 // R e s u l t
24 //DFT o f x ( n ) i s X( k )=
25 //
26 // 9 .
27 // − 1 . 2 9 28 9 3 2 + 0 . 1 2 1 3 2 0 3 i
28 // 2 . + i
29 // − 2 . 7 0 71 0 6 8 + 4 . 1 2 1 3 2 0 3 i
30 // 3 . − 3 . 6 7 4D−16 i
31 // − 2 . 7 0 71 0 6 8 − 4 . 1 21 3 2 0 3 i
32 // 2 . − i
33 // − 1 . 2 9 28 9 3 2 − 0 . 1 21 3 2 0 3 i
34 //
35 // Per idogram o f x ( n ) i s Pxx ( k/N)=
36 //
37 // 1 0 . 1 2 5
38 // 0 . 2 1 0 7 8 64
39 // 0 . 6 2 5
40 // 3 . 0 3 9 2 1 36
41 // 1 . 1 2 5
42 // 3 . 0 3 9 2 1 36
43 // 0 . 6 2 5
44 // 0 . 2 1 0 7 8 64
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Appendix

Scilab code AP 11 function [y]= sincnew(x)

2 i=find(x==0);

3 x(i)= 1; // don ’ t need t h i s i s /0 warning i s
o f f

4 y = sin(%pi*x)./(%pi*x);

5 y(i) = 1;

6 endfunction

sinc function
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