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Experiment: 1

Represent the given
discrete-time (sampled data)
sytem using pulse transfer
function and state space forms.

Scilab code Solution 1.01 Lab01

// Lab0l: (A) Represent the given discrete—time (
sampled data) sytem using

// pulse transfer function and state
space forms.

// (B) Observe the responses of continuous—
time and sampled data system.

// scilab — 5.5.1
// Operating System : Windows 7, 32—Dbit

//

kK K 3K K Kk Kk Kk koK 3k 3k ok 3k Sk sk sk sk sk sk ok ok kR ok 5k sk sk sk sk ok ok ok 3k Sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk koK 3k ok ok 3k Sk sk sk sk sk ok ok ok ok

//Clean the environment
close;
clear;
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clc;

//

K3k sk ok ok sk ok ok sk sk sk sk sk sk ko skok ok sk sk ok sk skok sk sk sk sk sk ok sk sk ok ok sk sk sk sk sk sk sk sk ok ok sk ok kosk ok sk sk sk sk ok sk ok ok sk ok sk sk kok sk ok

//A. Representation of discrete—time models

//

kKK K K K Kk sk sk sk sk sk sk sk sk sk sk sk ok ok ok kR sk koo skosk sk sk sk sk sk sk sk sk sk sk sk ok ok >k sk sk ks sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok

//State space representation
A=[0 1;-0.2 -0.1];

B=[0 1]’;
c=[1 0];
D=0;

sysd=syslin(’d’,A,B,C,D);

// Pulse transfer function representation
Num=1;

Den=poly ([0.2 0.1 11,2z, coeff’);
Gzl=syslin(’d’,Num,Den)

//Pulse transfer function from ss model
Gz2=ss2tf (sysd)

//Response of the system with sampling time Ts=0.5

sec.

//sampling Time
Ts=0.5;

t=0:Ts:10;

u=ones (1,length(t));

y=flts(u,sysd);
plot2d2(t,y,2)
zoom_rect ([0 O 10 1.2])
xgrid (35)

title( Response of discrete time system’, fontsize’

,3)
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xlabel ('kT’, "fontsize’,2)
ylabel ('y(kT)’, fontsize ’,2)

Sk ok KK K K o K KKK R K KK KR K K KK KR K K R K KKK K R K KK KO KK K KK KR KK R K KK K R K KKK O
// (B) Responses of the continuous—time and discrete

—time model of the given
// system .

S o KKK K o K KKK K K KK KR KK K K KKK R K KKK R K KK KO KK K KK KR K K R K KKK K KKK KO
//poles of contiuous time system are at —1, —2 and
den=poly([-1,-2,-3],78”, roots ') ;
num=1;
g=num ./den

g=syslin(’'c’,g)
tc=0:0.2:10;
yc=csim (" step” ,tc,g)

//Discrete —time respresentation with Ts=0.5;
sysz=dscr(g,Ts);

gz=ss2tf (sysz)

yd=flts (u,sysz);

//Responses

figure,

plot(tc,yc, 'blue’) //continuous time system

plot2d2(t,yd,5) // Discrete time system

title(’ Responses of continuous and discrete time
system ’, fontsize ’,3)

xlabel(’'t’, fontsize’ ,2)

ylabel (’y(t), (y(kT)’, fontsize’,2)

f=get (" current_figure”) //Current figure handle

f.background=8

xgrid (36)
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Figure 1.1: Lab01
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Experiment: 2

Discretize the given
continuous-time signal using
Zero Order Hold and First
Order Hold techniques.

Scilab code Solution 2.02 Lab02

// Lab02: Discretize the given continuous—time
signal using Zero Order Hold

// and First Order Hold techniques.
// scilab — 5.5.1
// Operating System : Windows 7, 32—Dbit

//

sk ok kK oK oK oK kKK K oK K K K K 3K K KK K K K K K K 3K K K R K K 3K K K KK K K K K R K 3K K K KK K K K K R K K K kR K K K Kok K
//Clean the environment

close;

clear;

clc;

//ramp generator during sampling period
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Figure 2.1: Lab02

tau.time = (0:0.5:1)7;

tau.values = (0:0.5:1);
importXcosDiagram( Lab0O2modelx.xcos ")
typeof (scs_m) //The diagram data structure
xcos_simulate(scs_m, 4);

This code can be downloaded from the website wwww.scilab.in
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Figure 2.2: Lab02
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Experiment: 3

Discretize the given
continuous-time system using
Bilinear Transformation.

Scilab code Solution 3.03 Lab03

1 // Lab03: Discretize the given continuous—time

system
2 // using Bilinear Transformation.
3
4 /) scilab — 5.5.1
5 // Operating System : Windows 7, 32—Dbit
6 //

>k >k 3k 3k 3k 3k ok ok koK 3k Sk ok ok 3k sk sk sk sk ok ok ok ok ok ok ok sk sk sk sk ok ok ok 3k Sk sk sk sk sk sk sk sk ok ok sk sk sk sk ok sk koK ok ok ok ok Sk sk sk sk sk ok ok ok ok

7 //Clean the environment

8 close;
9 clear;
10 clc;
11

12 //

k3K K 3K KKk kK sk sk sk sk sk sk sk sk sk sk sk ok ok kR sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok >k sk sk skosk sk skosk sk sk sk sk sk sk sk sk sk ok ko ok ok ok ok
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// State space representation of continuous time
system

//

K3k sk ok ke sk sk skosk sk sk sk sk sk sk sk ok sk skosk skosk sk sk sk sk sk sk sk ok sk sk sk skosk sk sk sk sk osk sk sk sk sk ok skosk sk sk sk sk sk sk sk sk sk sk ok sk sk kok sk ok

//

A=[0 1;-6 -5];

B=[0 1]7;
c=[1 0];
D=0;

sysc=syslin(’c’,A,B,C,D);
//transfer function
Gs=ss2tf (sysc)
disp(’Gs=")

disp (Gs)

//Response of the system
tc=0:0.1:10;

yc=csim (" step” ,tc,sysc);

//

>k >k 3k 3k 3k 3k kR ok koK ok 3k ok 3k Sk sk sk sk sk sk ok ok kK ok ok sk sk sk sk ok ok ok 3k Sk sk sk sk sk sk sk ok >k ok sk sk sk sk ok ok koK ok 3k ok ok sk sk sk sk ok ok ok ok ok

// Discretization of the system using bilinear
transformation at
// sampling time Ts=0.5 sec

//

k2K K 3K 3K K 3k sk koK 3k Sk Sk Sk sk sk sk sk sk sk Rk kR ok sk sk sk sk ok ok ok ok Sk Sk sk sk sk sk sk sk kR ok sk sk sk sk ko ok ok ok ok ok Sk sk sk sk sk sk ok ok ok ok

Ts=0.5;

sysd=cls2dls(sysc,Ts);

//Pulse transfer function
Gz=ss2tf (sysd)

disp(’Gz=")

disp(’Gz=",Gz)

//Response of the discrete system
td=0:Ts:10;
ud=ones (1, length(td));

yd=flts (ud,sysd);
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//

K3k sk ok ok sk ok ok sk sk sk sk sk sk ko skok ok sk sk ok sk skok sk sk sk sk sk ok sk sk ok ok sk sk sk sk sk sk sk sk ok ok sk ok kosk ok sk sk sk sk ok sk ok ok sk ok sk sk kok sk ok

// Ploting the responses

//

kKK K K K Kk sk sk sk sk sk sk sk sk sk sk sk ok ok ok kR sk koo skosk sk sk sk sk sk sk sk sk sk sk sk ok ok >k sk sk ks sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok

plot2d(tc,yc,5)//continuous time

plot2d2(td,yd,2) // Discrete time

xgrid (35)

title(’Responses of continous and Tustin transformed
discrete time system’, fontsize ’,3)

xlabel ('kT’, fontsize ’,2)

ylabel (’y(kT)’, fontsize ’,2)

h=legend (’y(t)’, ’y(kT)")

h.legend_location = "in_lower_right”;
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Experiment: 4

Map constant attenuation loci
from s-plane to z-plane.

Scilab code Solution 4.04 Lab04

//Lab. 04: Map constant attenuation loci from s—
plane to z—plane

// scilab — 5.5.1
// Operating System : Windows 7, 32—bit

//

kK K 3K K K Kk Kk koK sk Sk Sk sk sk sk sk sk sk ok ok ok ok R ok sk sk ke sk sk sk sk sk Sk Sk sk sk sk sk sk sk ok kR 3k 3k sk sk sk sk sk sk sk Sk ok sk sk sk sk sk ok ok ok okok

//Clean the environment
close;

clear;

clc;

//// System model
s=poly (0, s ’);
Ts=0.2;

//

kK KK K K Kk koK sk sk sk sk sk sk sk sk sk ok ok ok kR sk sk ko skosk sk sk sk sk sk sk sk sk sk sk sk kR >k sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk ok ok ok ok ok
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// S—plane pole—zero map for the continuous time
system

//

K3k sk ok ok sk sk kosk sk ok sk sk sk sk sk ok sk skosk skosk sk sk sk sk sk sk ok skosk sk skosk sk sk sk sk sk sk sk ok sk sk sk skosk sk sk sk sk sk sk R sk sk ok sk sk okokoskok

for sigma=[-1 1];
for w=0:0.2:16
num=1;
den=poly([-sigma+%i*w, -sigma-%i*w], 's’);
g=syslin(’c’,num./den);
plzr(g)
end
end
sgrid ()
title(’S—plane pole—zero map for the constant
attenuation loci’, fontsize’,3)

// Zoom axes for clarity
zoom_rect ([-5 -20 5 20])

//

kK K 3K 3k Kk Kk Kk koK 3k 3k Sk sk Sk sk sk sk sk sk ok kR ok 3k sk sk sk sk sk sk sk ok Sk Sk sk sk sk sk sk sk kR ok 3k 3k sk sk ko sk ok ok ok ok 3k sk sk sk sk ok ok ok ok ok

//Z—plane pole—zero map for the sample data system

//

>k >k 3k 3k 3k 3k ok ok koK ok 3k ok ok Sk sk sk sk sk ok sk ok ok ok ok ok sk sk sk sk ok ok ok Sk Sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk ok koK ok ok ok ok Sk sk sk sk sk ok ok ok ok

figure;

for sigma=[-1 1]

for w=0:0.2:16
num=1;
den=poly([-sigma+%i*w, -sigma-%i*w], 's’);
g=syslin(’c’,num./den) ;
gz=dscr (g, Ts)
plzr (gz);

end

end

zgrid () ;
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Imaginary axis

S-plane pole-zero map for the constant attenuation loci
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Figure 4.1: Lab04

f=get (" current_figure”) //Current figure handle
f.background=8

title(’Z—plane pole—zero map for the constant
attenuation loci

Y

, fontsize’ ,3)

// Zoom axes for clarity
zoom_rect ([-1.56 -1.5 1.5 1.5])
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Imaginary axis

Z-plane pole-zero map for the constant attenuation loci

0.5

P X

» Poles

-18 -1 -0.8 o 0.5
Real axis

Figure 4.2: Lab04
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Experiment: 5

Map constant frequency loci
from s-plane to z-plane.

Scilab code Solution 5.05 Lab05

//Lab. 05: Map constant frequency

to z—plane

// scilab — 5.5.1
// Operating System

//

kK K 3K kK Kk sk koK 3k Sk Sk sk sk sk sk sk sk ok ok ok kR sk sk ko sk sk sk sk sk Sk Sk sk sk sk sk sk sk kR ok 3k sk sk sk ok ke sk sk ok ok ok sk sk sk sk sk sk ok ok ok ok

//Clean the environment
close;

clear;

clc;

// System model
s=poly (0, 's’);
Ts=0.2;

w=1.5;

//

22
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kK K 3K K Kk 3k 3k koK 3k 3k Sk Sk sk sk sk sk sk kR ok kR 3k 3k sk ko sk ok sk ok Sk Sk sk sk sk sk sk sk kR ok 3k 3k sk sk ko ok ok ok ok ok ok sk sk sk sk sk ok ok ok ok

// S—plane pole—zero map for the continuous time
system

//

K>k 3K 3k 3k 3k sk sk ok ok ok Sk Sk Sk sk sk sk sk sk ok kR ok 3k 3k sk sk sk koK ok ok ok Sk sk sk sk sk sk sk kR ok ok 5k sk ko ke ke ok ok sk sk sk sk sk sk sk ok ok ok ok ko

for sigma=-1.1:0.2:20
num=1;
den=poly([-sigma+%i*w, -sigma-%i*w], 's’);
g=syslin(’c’,num./den);

plzr (g)
end
sgrid ()
title(’S—plane pole—zero map for the constant
frequency loci’, fontsize’,3)
// Zoom axes for clarity
zoom_rect ([-21 -10 5 10])

//

kK K 3K K Kk Kk Kk koK 3k 3k Sk sk Sk sk sk sk sk ok ok ok kR 3k sk sk ks sk sk sk sk sk Sk sk sk sk sk sk sk kR ok sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok ok

//Z—plane pole—zero map for the sample data system

//

>k >k 3k 3k 3k 3k ok ok koK ok 3k ok ok Sk sk sk sk sk ok sk ok ok ok ok ok sk sk sk sk ok ok ok Sk Sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk ok koK ok ok ok ok Sk sk sk sk sk ok ok ok ok

figure;
for sigma=-1.1:0.2:20
num=1;
den=poly([-sigma+%i*w, -sigma-%i*w], 's’);
g=syslin(’c’,num./den);
gz=dscr(g,Ts)
plzr (gz);
end
zgrid ()
f=get (" current_figure”) //Current figure handle
f.background=8

23



S-plane pole-zero map for the constant frequency loci
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Figure 5.1: Lab05

45 title(’Z—plane pole—zero map for the constant
frequency loci’, fontsize ’,3)

46 // Zoom axes for clarity

47 zoom_rect([-1.5 -1.2 1.5 1.2])

24



Imaginary axis

Z-plane pole-zera map for the constant frequency loci
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Figure 5.2: Lab05
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Experiment: 6

Map constant constant
damping ratio loci from s-plane

to z-plane.

Scilab code Solution 6.06 Lab06

O = W N

//Lab. 06: Map constant damping ratio loci from s—
plane to z—plane

// scilab — 5.5.1
// Operating System : Windows 7, 32—Dbit

//

K3k sk ok ok sk sk kosk sk sk sk sk sk sk sk ok skoskosk skosk sk sk sk sk sk sk sk sk skosk sk skosk sk sk sk sk sk sk sk ok skosk sk skosk sk kosk sk sk sk sk sk sk sk ok sk sk okokosk ok

© 00 N O
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//Clean the environment
close;

clear;

clc;

// System model
s=poly (0, ’s’);
Ts=0.2;

//
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kK 3K 3K 3k Kk sk koK sk ok Sk Sk sk sk sk sk sk sk ok kR ok 3k 3k sk sk koK sk ok ok ok Sk sk sk sk sk sk sk ok kR ok sk ko sk ke k sk ok sk sk sk sk sk sk sk ok ok ok ok ok ok

// S—plane pole—zero map for the continuous time
system

//

K>k 3K 3k 3k 3k sk sk ok ok ok Sk Sk Sk sk sk sk sk sk ok kR ok 3k 3k sk sk sk koK ok ok ok Sk sk sk sk sk sk sk kR ok ok 5k sk ko ke ke ok ok sk sk sk sk sk sk sk ok ok ok ok ko

for w=0:0.2:19
sigma=w;
num=1;
den=poly([-sigma+%i*w, -sigma-%i*w], 's’);
g=syslin(’c’,num./den) ;
plzr (g)
end
sgrid ()
title(’S—plane pole—zero map for the constant
damping ratio loci’, fontsize ’,3)

// Zoom axes for clarity

zoom_rect ([-20 -22 20 22])

//

K3k 3k ok ok sk ok ok sk ok ok sk sk sk sk sk ok ok sk ok ok sk sk ok sk skok sk sk sk ok sk sk ok sk sk ok sk skok sk sk sk sk sk sk ok sk ok ok skok ok sk skok sk sk ok ok sk ok ok ko

//Z—plane pole—zero map for the sample data system

//

k3K 3K K K Kk Kk koK sk sk sk sk sk sk sk sk sk sk ok kR sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok Rk sk sk koK sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok

figure;
for w=0:0.2:19

sigma=w;

num=1;

den=poly([-sigma+%i*w, -sigma-%ix*w], 's’);

g=syslin(’'c’,num./den);

gz=dscr(g,Ts)

plzr (gz);
end
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S-plane pole-zero map for the constant damping ratio loci
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Real axis
Figure 6.1: Lab06
zgrid () ;

f=get (" current_figure”) //Current figure handle

f.background=38

title(’Z—plane pole—zero map for the constant
damping ratio loci’, fontsize ,3)

// Zoom axes for clarity
zoom_rect ([-1.2 -1.2 1.2 1.2])
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Imaginary axis

Z-plane pole-zero map for the constant damping ratio loci
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Figure 6.2: Lab06
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Experiment: 7

Transform the discrete-time
state model into canonical
forms.

Scilab code Solution 7.07 Lab07

//Lab. 07: Transform the discrete—time state model
into canonical forms.

// scilab — 5.5.1
// Operating System : Windows 7, 32—Dbit

//

K3k sk ok ok sk sk kosk sk sk sk sk sk sk sk ok skoskosk skosk sk sk sk sk sk sk sk sk skosk sk skosk sk sk sk sk sk sk sk ok skosk sk skosk sk kosk sk sk sk sk sk sk sk ok sk sk okokosk ok

//Clean the environment
close;

clear;

clc;

// State space model
A=[0 -0.4; 1 -1.3];
B=[0;1];

c=[0 1];
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D=0;

sys=syslin(’d’,A,B,C,D)

mprintf (’State space representation of the given
discrete system is )

disp(sys)

// Transfer function model

systf=ss2tf (sys)

mprintf (' Transfer function of the given discrete
system is’)

disp(systf)

// Eigen values of system matrix

eig_val=spec(A)

mprintf ("Eigen values of the system matrix are’)
disp(eig_val)

// Controllable canonical form

[Phi,Gamma ,T]=canon(A,B)

T=f1lipdim(T,2) ;

Phi=T\A*T;

Gamma=T\B;

C=CxT;

D=D;

sysd=syslin(’d’,Phi,Gamma,C,D)

mprintf (’State space representation of the given
discrete system ’)

disp(’in controllable canonical form is’)

disp(sysd)

// Diagonal form

[Phid M]=bdiag(A);

Gammad=M\B;

Cd=Cx*xM;

Dd=D;
sysd=syslin(’d’,Phid, Gammad ,Cd,Dd)

31



50 mprintf (’State space representation of the given’)
51 disp(’discrete system in diagonal form is’)
52 disp(sysd)
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Experiment: 8

Check controllability &
observability of a given system.

Scilab code Solution 8.08 Lab08

//Lab. 08: Check controllability & observability of

a given system.

// scilab — 5.5.1
// Operating System
//

kK K 3K K K Kk Kk koK sk Sk Sk sk sk sk sk sk sk sk ok Rk R 3k sk sk ke skosk sk sk sk Sk Sk sk sk sk sk sk sk kR ok 3k 3k sk sk ko sk sk sk ok ok sk sk sk sk sk sk ok ok kok

//Clean the environment
close;

clear;

clc;

// State space representation

A=[-0.2 0;0 -0.8]1;

B=[1 1]’;

c=[4/3 -1/3];

D=0;
sys=syslin(’d’,A,B,C,D)

33
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// Controllability test

n=cont_mat (sys)
mprintf (" Controllability matrix is’)
disp(n)

if rank(n)==2 then
disp(’Rank of controllability matrix is full ,’)
disp(’therefore system is controllable’)
else

disp(’Rank of controllability matrixis not full ,

")
disp(’therefore system is uncontrollable ’)
end

disp(’7)

// Observability test

m=obsv_mat (sys)

mprintf (7 Observability matrix is’)
disp(m)

if rank(m)==2 then
disp(’Rank of observability matrix is full ,’)
disp(’therefore system is observable )

else

disp(’Rank of observability matrix is not full ,’

)
disp(’therefore system is unobservable’)
end
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Experiment: 9

Design state feedback controller
for a given system to achieve
desired dynamic characteristics.

Scilab code Solution 9.09 Lab09

//

// Lab. 09: Design state feedback controller for a
given system to achieve desired dynamic
characteristics .

// scilab — 5.5.1

// Operating System : Windows 7, 32—Dbit

//

K3k sk ok ok sk sk ok sk sk sk sk sk sk sk sk ok sk sk sk ok sk skosk sk sk sk ke sk sk ok sk ok ok sk sk sk sk sk sk sk ok ok sk ok ok sk ok ok sk sk sk ok sk ok okosk ok ok sk kokosk ok

//Clean the environment
close;
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clear;
clc;

// State space representation

A=[0 1;-0.16 -1.5];
B=[0 1]7;

c=[0 171;

D=0;

sysl=syslin(’d’,A,B,C,D)

// Desired poles

Pd=[0.5+0.5%%i 0.5-0.5%%i];

// State feedback gain matrix

K=ppol (A,B,Pd)

mprintf (’State feedback gain matrix

disp (K)

//Closed loop system

sys=syslin(’d’,A-B*K,B,C,D)

// Sampling Time
Ts=0.5;

t=0:Ts:14;

u=ones (1,length(t));

//Response of open loop system

yl=flts(u,sysl);
plot2d2(t,y1,2)
xgrid (35)

title(’Response of open loop system’, fontsize ’,3)

xlabel ('kT’, "fontsize’,2)
ylabel ('y(kT)’, "fontsize

//Response of closed loop system

y=flts(u,sys);
figure,

7,2)
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plot2d2(t,y,2)

f=get (" current_figure”) //Current figure handle

f.background=38

xgrid (36)

title (’Response of closed loop system
xlabel ('kT’, "fontsize ’,2)

ylabel ('y(kT)’, fontsize ’,2)

Y

, ' fontsize ’,3)
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Experiment: 10

Design dead beat controller for
a given system.

Scilab code Solution 10.10 Labl0

//

// Lab.10: Design dead beat controller for a given
system

// scilab — 5.5.1

// Operating System : Windows 7, 32—Dbit

//

>k >k ok ok ok ok ok ok ok ok ok ok ok ok Sk sk sk sk sk ok ok sk sk sk ok ok sk sk sk ke ke ok ok ok Sk Sk sk sk sk sk sk sk ok sk sk sk sk ok ok ok ke ok ok ok ok ok Sk sk sk sk sk ok ok ok ok

//Clean the environment
close;

clear;

clc;
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//Sampling time
Ts=0.5;

// State space representation of the continuous time

system
A=[0 1;0 0];
B=[0 1]°;
c=[1 0];
D=0;

sysl=syslin(’c’,A,B,C,D)
//Discrete model of the system

sys=dscr (sysl,Ts)
mprintf (" Discrete model of the system is sys=")
disp(sys)

// Desired poles
Pd=[0 0];

// State feedback gain matrix
K=ppol(sys.A,sys.B,Pd)

mprintf (’State feedback gain matrix is K=7)
disp (K)

//Responses
t=0:Ts:10;
u=ones (1,length(t));

//Response of open loop system
yl=flts(u,sys);
plot2d2(t,y1,2)

xgrid (35)

title(’Response of the open loop system’, fontsize’

»3)
xlabel ('kt’, 'fontsize ’,2)
ylabel (’y(k)’, fontsize ’,2)
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//Response of closed loop system

syscl=syslin(’d’,sys.A-sys.B*K,sys.B,sys.C,0)

y=flts(u,syscl);

figure,

plot2d2(t,y,2)

f=get (" current_figure”) //Current figure handle

f.background=8

xgrid (36)

title(’Response of the closed loop system with dead
beat controller’, ’ fontsize ’,3)

xlabel ('kt’, 'fontsize ’,2)

ylabel(’y(k)’, fontsize ’,2)
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Experiment: 11

Design full state observer for a
given system.

Scilab code Solution 11.11 Labll

//

// Lab. 11: Design a full

system
//
//
//

K3k sk ok ok sk sk kosk sk ok sk sk sk ok sk ok skosk sk kosk sk sk sk sk sk sk sk ok sk sk sk ok sk skok sk sk sk sk sk ok sk sk ok sk sk sk kosk sk sk sk sk ok ok sk ok ok sk kokosk ok

scilab — 5.5.1
Operating System

//Clean the environment

close;
clear;
clc;

//State space model

A=[0 1 0; O O 1;
B=[0 0 1]’;
C=[1 0 0];

0.6 0.7 0.2 1;

45
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D=0;

I

//Stabilizer design

//

Desired poles

Pd=[0.2,-0.5+0.5%%1,-0.5-0.5%%i];

//

State feedback gain matrix

K=ppol (A,B,Pd)

//Computation of gain for dead beat observer

obs

response
r_pol=[0 0 0];

L=ppol (A’,C’,o0obsr_pol)”’

// Augmented system

temp=size (A);

Aa=[A-B*K B*xK; zeros(temp (1) ,temp(2)) A-LxC
1

temp=size (Aa);
Ba=zeros (temp (1) ,1);
Ca=eye (6,6);

sys

=syslin(’d’,Aa,Ba,Ca,zeros(6,1))

//Observer error

t=0:0.2:4.5;

u=zeros (1,length(t));

//y=flts (u,5y5)

x=1titr (Aa,Ba,u,[0.1 0.1 0.1 -0.5 -0.5 -0.5]17)

temp=size (Aa) ;
temp=temp (1,1)/2;

col
for

=[1 2 5]; //specifying plot colors
i=1:temp
subplot(2,1,1), plot2d2(t,x(i,:),col(1,1i))
if i==temp then
title(’States of the system’, fontsize’,2);
xlabel ('$t$’, "fontsize ’,2);
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end

ylabel ("$x(kT)$’, "fontsize ’,2);

hi=legend ("$x_1(kT)$’, " $x 2(kT)$’, $x_3(kT)$
7);

hl.legend_location = "in_lower_right”;

xgrid (35)

subplot(2,1,2), plot2d2(t,x(i+3,:),co0l(1,i))

if

end

i==temp then

title(’Observer error’, fontsize’,2)

xlabel ('$t$ 7, "fontsize ’,2)

ylabel (’$e (kT)=x(kT)—\hat x(kT)$’, fontsize’

,2)

h2=legend (’$e_1(kT)$’, $e_2(kT)$’, $e_3 (kT)$
)

h2.legend_location = "in_lower_right”

xgrid (35)
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Experiment: 12

Determine stability of a given
system by using Lyapunov
stability analysis.

Scilab code Solution 12.12 Labl2

//Lab. 12: Determine stability of a given system by
using Lyapunov stability analysis

// scilab — 5.5.1
// Operating System : Windows 7, 32—Dbit
//

K3k sk ok ok sk ok ok sk sk kosk sk sk ok sk ok ok sk sk ok sk sk ok sk sk sk ke sk ok ok sk ok ok sk skosk sk sk sk sk sk ok ok sk ok skosk ok sk sk sk sk ok sk ok ok sk ok ok sk kokosk ok

//Clean the environment
close;

clear;

clc;

//System matrix
a=[0 1; -0.5 -1];
q=-eye (2,2);
p=lyap(a,q, ’'d’);
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// For a stable system matrix, p should be positive
definite for

//which all the principle minors or all eigen values
of the matrix p

// should be positive

eig_val=spec(p);
m=length(eig_val);
stable=0;
for i=1:m;
if real(eig_val(i))>0 then
stable=stable+1;
end
end
if stable==m then
disp(’The system is asymptotically stable’)
else
disp(’The system is unstable or critically
stable ")
end
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Experiment: 13

Construct root loci and bode
plots for a given discrete-time
system.

Scilab code Solution 13.13 Labl3

//Lab. 13: Construct root loci and bode plots for a
given discrete —time system

// scilab — 5.5.1
// Operating System : Windows 7, 32—Dbit

//

sk ok ok oK K K oK R KK KK kK KK KK R K R KK KK kK KK KK K KK K K KK kK kK K KR K K K K kK KoK KK K KK KR K K K
//Clean the environment

close;

clear;

clc;

//Sampling time
Ts=0.4;

//System transfer function.
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s=poly(0,’s’);

g=1/(s*x(s+1));
g=syslin('c’,g);
gz=dscr(g,Ts)//discrete model

// Root locus for the discrete system

evans (gz,100)

title(’Root locus of the discrete—time system ')
zgrid (0:0.1:0.5)

zoom_rect ([-1.2 -1.5 1.2 1.5])

figure

// Bode plot for the discrete system

bode (gz)

f=get (" current_figure”) //Current figure handle
f.background=8

title (’Bode plot of discrete—time system ’)
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